Skip to main content
Log in

Synthesis of nanohydroxyapatite in the presence of iron(III) ions

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of small amounts of iron(III) ions on the morphology, phase composition, and structure of the products of the hydroxyapatite (HAP) synthesis has been studied by electron microscopy, X-ray powder diffraction, and Mossbauer spectroscopy methods. It has been demonstrated that the introduction of dopant iron(III) ions into the reaction mixture at different stages of HAP formation makes it possible to control crystal growth, morphology, and phase composition. The iron ions are not incorporated into the HAP crystal structure; rather, they form their proper nanophase, as well as adsorption clusters on the HAP surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Barinov and V. S. Komlev, Bioceramics Based on Calcium Phosphates (Nauka, Moscow, 2005), p. 10 [in Russian].

    Google Scholar 

  2. M. Bohner, Injury 31, D37 (2000).

    Article  Google Scholar 

  3. M. Vallet-Regi, J. Chem. Soc., Dalton Trans., 97 (2001).

    Google Scholar 

  4. D. C. Carvalho, L. G. Pinheiro, A. Campos, et al., Appl. Catal., A: Gen., 471, 39 (2014).

    Article  CAS  Google Scholar 

  5. Zhenping Qu, Yahui Sun, Dan Chen, and Yi Wang, J. Mol. Catal. A: Chem. 393, 182 (2014).

    Article  CAS  Google Scholar 

  6. M. Pogosova, D. Provotorov, A. Eliseev, et al., Dyes Pigments, 113, 96 (2015).

    Article  CAS  Google Scholar 

  7. G. Salviulo, M. Bettinelli, U. Russo, et al., J. Mater. Sci., 46, 910 (2011).

    Article  CAS  Google Scholar 

  8. Chun-Han Hou, Sheng-Mou Hou, Yu-Sheng Hsueh, et al. Biomaterials 30, 3956 (2009).

  9. A. Tampieri, T. D’Alessandro, M. Sandri, et al., Acta Biomater., 8, 843 (2012).

    Article  CAS  Google Scholar 

  10. Kunfeng Zhao, Botao Qiao, Junhu Wang, et al., Chem. Commun., 47, 1779 (2012).

    Article  Google Scholar 

  11. H. R. Low, N. Phonthammachai, A. Maignan, et al., Inorg. Chem., 47, 11774 (2008).

    Article  CAS  Google Scholar 

  12. I. Mayer, H. Diab, and I. Felner, J. Inorg. Biochem., 129 (1992).

    Google Scholar 

  13. I. V. Melikhov, V. F. Komarov, A. V. Severin, et al., Dokl. Phys. Chem., 373, 355 (2000).

    CAS  Google Scholar 

  14. P. W. Brown, J. Am. Ceram. Soc. 75, 17 (1992).

    Article  CAS  Google Scholar 

  15. Unified Water Analysis Methods, Ed. by Yu. Yu. Lur’e (Khimiya, Moscow, 1973) [in Russian].

  16. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray Powder and Electron-Optical Analysis (MISIS, Moscow, 2002) [in Russian].

    Google Scholar 

  17. N. C. Collier, N. B. Milestone, J. Hill, et al., Waste Manage. 26 (2006).

    Google Scholar 

  18. S. Scaccia, M. Carewska, A. D. Bartolomeo, et al., Thermochim. Acta, 383, 145 (2002).

    Article  CAS  Google Scholar 

  19. J. O. Nriagu, Geochim. Cosmochim. Acta 36, 459 (1972).

    Article  CAS  Google Scholar 

  20. B. M. Al-Hasni, G. Mountjoy, and E. Barney, J. Non-Cryst. Solids 380, 141 (2013).

    Article  CAS  Google Scholar 

  21. A. S. Posner, N. C. Blumenthal, and F. Betts, in Phosphate Minerals, Ed. by G. O. Nriagu and P. B. Moore (Springer, Berlin, 1984).

  22. J. M. Hughes, M. Cameron, and K. D. Crowley, Am. Mineral. 74, 870 (1989).

    CAS  Google Scholar 

  23. ASTM-41-224, 41-225.

  24. J. Herrero, O. Artieda, and W. H. Hudnall, Soil Sci. Soc. Am. J. 73, 1757 (2009).

    Article  CAS  Google Scholar 

  25. N. Prieto-Taboada, O. Gómez-Laserna, I. Martínez-Arkarazo, et al., Anal. Chem., 86, 10131 (2014).

    Article  CAS  Google Scholar 

  26. H. Weiss and M. F. Bräu, Angew. Chem., Int. Ed. Engl. 48, 3520 (2009).

    Article  CAS  Google Scholar 

  27. A. Y. Polyakov, A. E. Goldt, T. A. Sorkina, et al., Cryst. Eng. Commun., 14, 8097 (2012).

    Article  CAS  Google Scholar 

  28. C. Díaz-Aguila, M. Morales, E. Baggio-Saitovitch, et al., III Congreso Internacional de Biomateriales BIOMAT’03, 2003.

    Google Scholar 

  29. E. I. Suvorova, V. V. Klechkovskaya, V. F. Komarov, et al., Crystallogr. Rep. 51, 881.

  30. D. A. Pankratov, Inorg. Mater. 50, 82 (2014).

    Article  CAS  Google Scholar 

  31. D. A. Pankratov, A. A. Veligzhanin and Y. V. Zubavichus, Russ. J. Inorg. Chem. 58, 67 (2013).

    Article  CAS  Google Scholar 

  32. D. A. Pankratov and Y. M. Kiselev, Russ. J. Inorg. Chem. 54, 1451 (2009).

    Article  Google Scholar 

  33. M. D. Dyar, E. R. Jawin, E. Breves, et al., Am. Mineral., 99, 914 (2014).

    Article  Google Scholar 

  34. J. Mingzhi, C. Xianhao, X. Weiming, et al., Hyperfine Interact., 41, 645 (1988).

    Article  Google Scholar 

  35. M. M. Gadgil and S. K. Kulshreshtha, J. Solid State Chem. 111, 357 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Severin.

Additional information

Original Russian Text © A.V. Severin, D.A. Pankratov, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 3, pp. 279-287.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severin, A.V., Pankratov, D.A. Synthesis of nanohydroxyapatite in the presence of iron(III) ions. Russ. J. Inorg. Chem. 61, 265–272 (2016). https://doi.org/10.1134/S0036023616030190

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616030190

Keywords

Navigation