Skip to main content
Log in

Powder systems for calcium phosphate ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

The present review describes approaches to the preparation of powder formulations for production of calcium phosphate ceramic materials. In order to mold semifinished powder items by means of various methods powder formulations, comprising synthetic powders and fabrication binders, are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lange, F.F., Powder processing science and technology for increased reliability, J. Am. Ceram. Soc., 1989, vol. 72, no. 1, pp. 3–15.

    Article  CAS  Google Scholar 

  2. Veljovic, Dj., Jokic, B., Petrovic, R., Mihailescu, I.N., and Janackovic, Dj., Processing of dense nanostructured HAP ceramics by sintering and hot pressing, Ceram. Int., 2009, vol. 35, no. 4, pp. 1407–1413.

    Article  CAS  Google Scholar 

  3. Lee, G. and Barlow, J.W., Selective laser sintering of calcium phosphate powders, Proc. of the Solid Freeform Fabrication Symp., Austin, TX, 1994, pp. 191–197.

    Google Scholar 

  4. Liu, F.-H., Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation, Appl. Surf. Sci., 2014, vol. 297, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  5. Bolarinwa, A. Gbureck, U., Purnell, P., Bold, M., and Grover, L.M., Cement casting of calcium pyrophosphate based bioceramics, Adv. Appl. Ceram., 2010, vol. 109, no. 5, pp. 291–295.

    Article  CAS  Google Scholar 

  6. Dai, X. and Shivkumar, S., Electrospinning of PVAcalcium phosphate sol precursors for the production of fibrous hydroxyapatite, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1412–1419

    Article  CAS  Google Scholar 

  7. Bohner, M. and Lemaitre, J., Can bioactivity be tested in vitro with SBF solution? Biomaterials, 2009, vol. 30, no. 12, pp. 2175–2179.

  8. Legeros, R.Z., Biodegradation and bioresorption of calcium phosphate ceramics, Clin. Mater., 1993, vol. 14, no. 1, pp. 65–88.

    Article  CAS  Google Scholar 

  9. Ievlev, V.M., Putlyaev, V.I., Safronova, T.V., and Evdokimov, P.V., Additive technologies for making highly permeable inorganic materials with tailored morphological architectonics for medicine, Inorg. Mater., 2015, vol. 51, no. 13, pp. 1295–1313.

    Article  Google Scholar 

  10. Makhni, M.C., et al., Tissue engineering advances in spine surgery, Regener. Med., 2016, vol. 11, no. 2, pp. 211–222.

    Article  CAS  Google Scholar 

  11. Putlyaev, V.I. and Safronova, T.V., A new generation of calcium phosphate biomaterials: the role of phase and chemical compositions, Glass Ceram., 2006, vol. 63, nos. 3–4, pp. 99–102.

    Article  CAS  Google Scholar 

  12. Modern Composite Materials, Broutman, L.J. and Krock, R.H., Eds., Reading, MA: Addison-Wesley, 1967.

  13. Fillingham, Y. and Jacobs, J., Bone grafts and their substitutes, Bone Joint J., 2016, vol. 98, no. 1, suppl., pp. 6–9.

    Article  Google Scholar 

  14. Dorozhkin, S.V., Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications, Ceram. Int., 2016, vol. 42, no. 6, pp. 6529–6554.

    Article  CAS  Google Scholar 

  15. Hill, W.L., Faust, G.T., and Reynolds, D.S., Am. J. Sci., 1944, vol. 242, no. 9, pp. 457–477; Troemel, G., Stahl Eisen, 1943, vol.63, no. 2, pp. 21–30.

    Article  CAS  Google Scholar 

  16. Shen, Y., Liu, W., Wen, C., Pan, H., Wang, T., Darvell, B.W., Lu, W.W., and Huang, W., Bone regeneration: importance of local pH—strontium-doped borosilicate scaffold, J. Mater. Chem., 2012, vol. 22, no. 17, pp. 8662–8670.

    Article  CAS  Google Scholar 

  17. Champion, E., Sintering of calcium phosphate bioceramics, Acta Biomater., 2013, vol. 9, no. 4, pp. 5855–5875.

    Article  CAS  Google Scholar 

  18. LeGeros, R.Z., Calcium phosphate materials in restorative dentistry: a review, Adv. Dental Res., 1988, vol. 2, no. 1, pp. 164–180.

    Article  CAS  Google Scholar 

  19. Bandyopadhyay, A., Bernard, Sh., Xue, W., and Bose, S., Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants, J. Am. Ceram. Soc., 2006, vol. 89, no. 9, pp. 2675–2688.

    Article  CAS  Google Scholar 

  20. Safronova, T.V., Putlyaev, V.I., Kurbatova, S.A., Shatalova, T.B., Larionov, D.S., Kozlov, D.A., and Evdokimov, P.V., Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1177–1184.

    Article  CAS  Google Scholar 

  21. Safronova, T.V., Putlayev, V.I., Bessonov, K.A., and Ivanov, V.K., Ceramics based on calcium pyrophosphate nanopowders, Process. Appl. Ceram., 2013, vol. 7, no. 1, pp. 9–14.

    Article  CAS  Google Scholar 

  22. Chen, L., Song, W., Mark, D.C., Shi, T., Muzik, O., Matthew, H., and Ren, W., Flow perfusion culture of MC3T3-E1 osteogenic cells on gradient calcium polyphosphate scaffolds with different pore sizes, J. Biomater. Appl., 2016, vol. 30, no. 7, pp. 908–918.

    Article  CAS  Google Scholar 

  23. Wanga, Q., Wang, Q., Wang, J., Zhang, X., Yu, X., and Wan, C., Degradation kinetics of calcium polyphosphate bioceramic: an experimental and theoretical study, Mater. Res., 2009, vol. 12, no. 4, pp. 495–501.

    Article  Google Scholar 

  24. Safronova, T.V., Putlayev, V.I., and Evdokimov, P.V., Powder system for biocompatible ceramic materials for regenerative materials, in Vseross. soveshchanie “Biomaterialy v meditsine,” Moskva, 11 dekabrya 2015 g., Tezisy dokladov (All-Russ. Meeting “Biomaterials in Medicine,” Moscow, December 11, 2015, Abstracts of Papers), Moscow: Inst. Metall. Materialoved., Ross. Akad. Nauk, 2015, pp. 63–64.

    Google Scholar 

  25. Barlow, J.W., Lee, G., Crawford, R.H., Beaman, J.J., Marcus, H.L., and Lagow, R.J., US Patent 6183515, 2001.

    Google Scholar 

  26. Safronova, T.V. and Putlyaev, V.I., Inorganic materials science for medicine in Russia: materials based on calcium phosphates, Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 1, pp. 24–47.

    Google Scholar 

  27. Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medicine, Russ. Chem. Rev., 2010, vol. 79, no. 1, pp. 13–29.

    Article  CAS  Google Scholar 

  28. Safronova, T.V., Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction, Glass Ceram., 2009, vol. 66, nos. 3-4, pp. 136–139.

    Article  CAS  Google Scholar 

  29. Safronova, T.V., Korneichuk, S.A., Putlyaev, V.I., and Boitsova, O.V., Ceramics made from calcium hydroxyapatite synthesized from calcium acetate and potassium hydrophosphate, Glass Ceram., 2008, vol. 65, nos. 3–4, pp. 131–135.

    Article  CAS  Google Scholar 

  30. Safronova, T.V., Kuznetsov, A.V., Putlyaev, V.I., Veresov, A.G., and Ivanov, V.K., Ceramics made of hydroxyapatite synthesized from calcium acetate and sodium hydrophosphate, Perspekt. Mater., 2008, no. 6, special issue, pp. 96–98.

    Google Scholar 

  31. Gbureck, U., Hölzel, T., Biermann, I., Barralet, J. E., and Grover, L.M., Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping, J. Mater. Sci.: Mater. Med., 2008, vol. 19, no. 4, pp. 1559–1563.

    CAS  Google Scholar 

  32. Chen, G., Li, W., Zhao, B., and Sun, K., A novel biphasic bone scaffold: ß-calcium phosphate and amorphous calcium polyphosphate, J. Am. Ceram. Soc., 2009, vol. 92, no. 4, pp. 945–948.

    Article  CAS  Google Scholar 

  33. Sych, E.E., Pinchuk, N.D., Tovstonog, A.B., Golovkova, M.E., Kotlyarchuk, A.V., Evich, Ya.I., Skorokhod, V.V., and Savkova, I.I., The structure and properties of calcium phosphate ceramics produced from monetite and biogenic hydroxyapatite, Powder Metall. Met. Ceram., 2014, vol. 53, no. 7, pp. 423–430.

    Article  CAS  Google Scholar 

  34. Putlyaev, V.I., Kukueva, E.V., Safronova, T.V., Ivanov, V.K., and Churagulov, B.R., Features of octacalcium phosphate thermolysis, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 420–424.

    Article  CAS  Google Scholar 

  35. Safronova, T.V., Putlyaev, V.I., Avramenko, O.A., Shekhirev, M.A., and Veresov, A.G., Ca-deficient hydroxyapatite powder for producing tricalcium phosphate based ceramics, Glass Ceram., 2011, vol. 68, nos. 1–2, pp. 28–32.

    Article  CAS  Google Scholar 

  36. Safronova, T.V., Putlyaev, V.I., Kazakova, G.K., and Korneichuk, S.A., Biphase CaO–P2O5 ceramic based on powder synthesized from calcium acetat and ammonium hydrophosphate, Glass Ceram., 2013, vol. 70, nos. 1–2, pp. 65–70.

    Article  CAS  Google Scholar 

  37. Safronova, T.V., Knot’ko, A.V., Shatalova, T.B., Evdokimov, P.V., Putlyaev, V.I., and Kostin, M.S., Calcium phosphate ceramic based on powder synthesized from a mixed-anionic solution, Glass Ceram., 2016, vol. 73, no. 1, pp. 25–31.

    Article  CAS  Google Scholar 

  38. Khimicheskaya tekhnologiya keramiki i ogneuporov (Chemical Technology of Ceramics and Refractories), Budnikov, P.P. and Poluboyarinov, D.N., Eds., Moscow: Stroiizdat, 1972.

  39. Zemlyanoi, K.G., Temporary technological binders in industry, Refract. Ind. Ceram., 2013, vol. 53, no. 5, pp. 283–288.

    Article  CAS  Google Scholar 

  40. Balkevich, V.L., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Stroiizdat, 1984.

    Google Scholar 

  41. Lewis, J.A., Binder removal from ceramics, Annu. Rev. Mater. Sci., 1997, vol. 27, pp. 147–173.

    Article  CAS  Google Scholar 

  42. Mosin, Yu.M. and Mamedova, A.Yu., Temporary industrial binders for molding of industrial ceramics (review), Glass Ceram., 1995, vol. 51, nos. 7–8, pp. 249–254.

    Google Scholar 

  43. Safronova, T.V., Shekhirev, M.A., Putlyaev, V.I., and Tret’yakov, Yu D., Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations, Inorg. Mater., 2007, vol. 43, no. 8, pp. 901–909.

    Article  CAS  Google Scholar 

  44. Safronova, T.V., Putlyaev, V.I., Shekhirev, M.A., and Kuznetsov, A.V., Disperse systems in calcium hydroxyapatite ceramics technology, Glass Ceram., 2007, vol. 64, nos. 1–2, pp. 22–26.

    Article  CAS  Google Scholar 

  45. Safronova, T.V., Putlyaev, V.I., Ivanov, V.K., Knot’ko, A.V., and Shatalova, T.B., Powders mixtures based on ammonium pyrophosphate and calcium carbonate for preparation of biocompatible porous ceramic in the CaO–P2O5 system, Refract. Ind. Ceram., 2016, vol. 56, no. 5, pp. 502–509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, T.V., Putlyaev, V.I. Powder systems for calcium phosphate ceramics. Inorg Mater 53, 17–26 (2017). https://doi.org/10.1134/S0020168516130057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516130057

Keywords

Navigation