Skip to main content
Log in

Silicificated multidimensional reinforced carbon-carbon materials for a wide range of applications

  • Published:
Inorganic Materials Aims and scope

Abstract

Improvement of reinforcement schemes and production processes using different types of carbon matrices and reinforcing fibers makes it possible to change the properties of carbon-carbon composites in a wide range depending on the operating conditions. One of the most promising ways to improve oxidation resistance of the composites is a bulk liquid silicon infiltration, which makes it possible to use them in optical and friction systems, as a ballistic protection of vehicles and aircraft, as cutting and grinding tools, and as a thermal protection of spacecrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shchurik, A.G., Iskusstvennye uglerodnye materialy (Artificial Carbon Materials), Perm: Ural. Nauchno-Issled. Inst. Kompoz. Mater., 2009.

    Google Scholar 

  2. Kostikov, V.I. and Varenkov, A.N., Sverkhvysokotemperaturnye kompozitsionnye materialy (Ultra High-Temperature Composites), Moscow: Imzhiniring, 2003.

    Google Scholar 

  3. Bushuev, Yu.G., Persin, M.I., and Sokolov, V.A., Uglerod-uglerodnye kompositsionnye materialy (Carbon-Carbon Composites), Moscow: Metallurgiya, 1994.

    Google Scholar 

  4. Banichuk, N.V., Kobelev, V.V., and Rikards, R.B., Optimizatsiya elementov konstruktsii iz kompozitsionnykh materialov (Optimization of Construction Elements Made of Composites), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  5. Ashbee, K.H.G., Fundamental Principles of Fiber Reinforced Composites, Lancaster: Technomic, 1993.

    Google Scholar 

  6. Zhigun, I.G., Properties of spatial reinforced composites, in Kompozitsionnye materialy: sparvochnik (Composites: Handbook), Vasil’ev, V.V. and Tarnopol’skii, Yu.M., Eds., Moscow: Mashinostroenie, 1990, pp. 267–301.

    Google Scholar 

  7. Prokhorov, V.Yu., D’yakonov, A.Yu., and Kostogorova, O.Ya., Improvement of durability of carbon fibers in carbon-carbon composites, Tr. mezhd. simp. “Nadezhnost’ i kachestvo” (Proc. Int. Symp. “Reliability and Quality”), Yurkov, N.K., Ed., Penza: Penz. Gos. Univ., 2006, vol. 6, pp. 3–5.

    Google Scholar 

  8. Gaidachuk, A.V., Chesnokov, A.V., and Gurin, I.V., Presuppositions for complete production cycle of carbon-carbon composites in Ukraine, Aviats.-Kosmicheskaya Tekh. Tekhnol., 2013, no. 2, pp. 4–13.

    Google Scholar 

  9. Litvinov, V.B., Kovets, L.P., and Toksanbaev, M.S., Structural-mechanical properties of high-strength carbon fibers, Kompoz. Nanostrukt., 2011, no. 3, pp. 36–51.

    Google Scholar 

  10. Meleshko, A.I. and Polovnikov, S.P., Uglerod, uglerodnye volokna, uglerodnye kompozity (Carbon, Carbon Fibers, and Carbon Composite), Moscow: Sains-Press, 2007.

    Google Scholar 

  11. Soldatov, A.P. and Parenago, O.P., Modification of inorganic membranes by carbon nanocrystals, Ross. Khim. Zh., 2006, no. 1, pp. 60–63.

    Google Scholar 

  12. Bushuev, V.M., Musin, R.K., and Sinani, I.L., Regularities of pyrocompaction of tissue-broached carbon cage in thermogradient regime for production of hermetic constructions, Nauchno-Tekh. Vestn. Povolzh., 2012, no. 1, pp. 125–131.

    Google Scholar 

  13. Gurin, V.A. and Zelenskii, V.F., Gaseous manufacturing of carbon and carbon-carbon materials, Vopr. At. Nauki Tekh., 1999, no. 4 (76), pp. 13–31.

    Google Scholar 

  14. Sinani, I.L., Shchurik, A.G., and Osorgin, Yu.K., Carbon-carbon materials for orthopedics and traumatology, Ross. Zh. Biomekh., 2012, no. 2 (56), pp. 74–82.

    Google Scholar 

  15. Plastinki konstruktsionnogo nazancheniya (Construction Plates), Trostyanskaya, E.B., Ed., Moscow: Khimiya, 1974.

  16. Tesner, P.A., Obrazovanie ugleroda iz uglevodorodov gazovoi fazy (Carbon Release from Gaseous Hydrocarbons), Moscow: Khimiya, 1972.

    Google Scholar 

  17. Fialkov, A.S., Uglegrafitovye materialy (Carbon-Graphite Materials), Moscow: Energiya, 1979.

    Google Scholar 

  18. Lebedev, Yu.N., Shmakova, Yu.S., and Sushin, V.N., The structure of pyrocarbon during its formation, Izv. Akad. Nauk SSSR, Neorg. Mater., 1982, no. 5, pp. 792–794.

    Google Scholar 

  19. Sokol, A.A., Cheremskoi, P.G., and Shulaev, V.M., Nadmolekulyarnoe stroenie pirografita (Supramolecular Structure of Pyrographite), Kiev: Kharkov. Fiz.-Tekh. Inst., Akad. Nauk UkrSSR, 1988.

    Google Scholar 

  20. Skachkov, V.A., Tribological characteristics of pyrographite with different structures, Probl. Tribol., 2012, no. 2, pp. 120–123.

    Google Scholar 

  21. Khakimova, D.K., Volkov, G.M., and Barabanov, V.N., Influence of heating on the structure and strength of uglesitalls, in Konstruktsionnye materialy na osnove grafita (Graphite Composites), Moscow: Metallurgiya, 1974, no. 8, pp. 66–70.

    CAS  Google Scholar 

  22. Kuznetsov, V.G., Ponimatkin, V.P., and Prokof’ev, A.V., Pyrocarbon coating with hydrocarbon decomposition affected by vacuum arc discharge plasma, Vak. Tekh. Tekhnol., 2010, no. 4, pp. 255–258.

    Google Scholar 

  23. Karpinas, D.M., Tuchinskii, L.I., and Sapozhnikova, A.B., Kompozitsionnye materially v tekhnike (Implementation of Composites in Technics), Kiev: Tekhnika, 1985, pp. 134–141.

    Google Scholar 

  24. Fialkov, A.S., Chekanova, V.D., and Samoilov, V.S., Analysis of pyrolysis of furfural-phenol-formaldehyde binder, Khim. Tverd. Topl. (Moscow), 1971, no. 3, pp. 112–118.

    Google Scholar 

  25. Dolgodvorov, A.V. and Dokuchaev, A.G., Influence of physical-chemical characteristics of carbon-carbon material on its mechanical properties, Vestn. Perm. Nats. Issled. Politekh. Univ., 2015, no. 40, pp. 135–148.

    Google Scholar 

  26. Shchurik, A.G., Possible improvement of strength of staffs in carbon-carbon composites, I Mezhd. konf. “Uglerod: fundamental’nye problemy nauki, materialovedenie, tekhnologiya,” Tezisy dokladov (I Int. Conf. “Carbon: Fundamental Problems in Science, Material Science, and Technology,” Abstracts of Papers), Moscow, 2002, pp.214.

    Google Scholar 

  27. Sosedov, V.P., Svoistva uglerodnykh materialov na osnove ugleroda. Spravochnik (Properties of Carbon Materials: Handbook), Moscow: Metallurgiya, 1975.

    Google Scholar 

  28. Bacos, M.P., Carbon-carbon composites: oxidation behavior and coatings protection, J. Phys. IV, 1993, no. 3, pp. 1895–1903.

    CAS  Google Scholar 

  29. Badenhorst, H., Microstructure of natural graphite flakes revealed by oxidation: limitations of XRD and Raman techniques for crystallinity estimates, Carbon, 2014, no. 66, pp. 674–690.

    Article  CAS  Google Scholar 

  30. Palaninathan, R., Behavior of carbon-carbon composite under intense heating, Int. J. Aerosp. Eng., 2010, no. 2010, p.7.

    Google Scholar 

  31. Sinani, I.L. and Bushuev, V.M., Development of slip composition for the manufacture of hermetic carboncarbon composite constructions, Vestn. Perm. Nats. Issled. Politekh. Univ., 2012, no. 2, pp. 22–28.

    Google Scholar 

  32. Sinani, I.L., Bushuev, V.M., and Butuzov, S.E., Prospective development of new advanced technologies for hermetic sealing of carbon-carbon composites, Vestn. Perm. Nats. Issled. Politekh. Univ., 2012, no. 4, pp. 91–93.

    Google Scholar 

  33. Astapov, A.N. and Terent’eva, V.S., High temperature microcomposite thin-layer coatings with micro-, ultra-, and nanosize structure of oxide layers, Zavod. Lab., Diagn. Mater., 2010, no. 7, pp. 24–32.

    Google Scholar 

  34. Samsonov, G.V., Tugoplavkie soedineniya (Refractory Compounds), Moscow: Metallurgiya, 1963.

    Google Scholar 

  35. Wang, J., Jin, Z., and Lin, M., Influence of the porosity of C/C on the characterization of C/C-SiC composite prepared by reactive melt infiltration method, Mater. Sci. Forum, 2009, vols. 620–622, pp. 371–374.

    Article  Google Scholar 

  36. Kramarenko, E.I., Kulakov, V.V., and Kenigfest, A.M., Synthesis and properties of C/SiC friction carbonceramic materials, Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk, 2011, nos. 3–4, pp. 759–764.

    Google Scholar 

  37. Jiang, S.-Z., Xiong, X., Chen, Z.-K., Xiao, P., and Huang, B.-Y., Influence factors of C/C-SiC dual matrix composites prepared by reactive melt infiltration, Mater. Des., 2009, vol. 30, no. 9, pp. 3738–3742.

    Article  CAS  Google Scholar 

  38. Xiao, P., Li, Z., Zhu, Z.-B., and Xiong, X., The morphology and mechanism of formation of SiC in C/CSiC composites fabricated by liquid silicon infiltration, J. Ceram. Process. Res., 2010, vol. 11, no. 3, pp. 335–340.

    Google Scholar 

  39. Eustathopoulos, N. and Dezellus, O., Fundamental issues of reactive wetting by liquid metals, J. Mater. Sci., 2010, vol. 45, no. 16, pp. 4256–4264.

    Article  Google Scholar 

  40. Sobczak, N., Singh, M., and Asthana, R., High-temperature wettability measurements in metal/ceramic systems—some methodological issues, Curr. Opin. Solid State Mater. Sci., 2005, no. 9, pp. 241–253.

    Article  CAS  Google Scholar 

  41. Summ, B.D. and Goryunov, Yu.V., Fiziko-khimicheskie osnovy smachivaniya i rastekaniya (Physical-Chemical Principles of Wetting and Spreading), Moscow: Khimiya, 1976.

    Google Scholar 

  42. Elyutin, V.P., Kostikov, V.I., and Maurakh, M.A., Kinetics of titanium spreading on graphite, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1964, no. 11, pp. 5–10.

    Google Scholar 

  43. Dezellus, O., Contribution a l’etude des mecanismes de mouillage reactif, PhD Thesis, Grenoble: Inst. Natl. Polytech. de Grenoble, 2000.

    Google Scholar 

  44. Margiotta, J.C., Zhang, D., Nagle, D.C., and Feeser, C.E., Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure, J. Mater. Res., 2008, vol. 23, no. 5, pp. 1237–1248.

    Article  CAS  Google Scholar 

  45. Deryagin, B.V., Determination of specific surface of the porous bodies by capillary impregnation speed, Kolloid. Zh., 1946, vol. 8, nos. 1–2, pp. 27–30.

    Google Scholar 

  46. Kumar, S., Kumar, A., and Devi, R., Capillary infiltration of liquids into 3D-stitched C-C preforms. Part B: Kinetics of silicon infiltration, J. Eur. Ceram. Soc., 2009, no. 29, pp. 2651–2657.

    Article  CAS  Google Scholar 

  47. Tarabanov, A.S. and Kostikov, V.I., Silitsirovannyi grafit (Silicicated Graphite), Moscow: Metallurgiya, 1977.

    Google Scholar 

  48. Li, J.G., Reactive wetting in the liquid-silicon/solid carbon system, J. Am. Ceram. Soc., 1997, no. 4, pp. 873–880.

    Google Scholar 

  49. Ness, J.N. and Page, T.F., Microstructural evolution in reaction-bonded silicon carbide, J. Mater. Sci., 1986, no. 21, pp. 1377–1397.

    Article  CAS  Google Scholar 

  50. Zolfrank, C. and Sieber, H., Microstructure evolution and reaction mechanism of biomorthous Si/SiC ceramics, J. Am. Ceram. Soc., 2005, vol. 88, no. 1, pp. 51–58.

    Article  Google Scholar 

  51. Shulte-Fischedick, J., Zern, A., and Mayer, J., The morphology of silicon carbide in C/C-SiC composites, J. Mater. Sci. Eng., 2002, no. 332, pp. 146–152.

    Article  Google Scholar 

  52. Qilong, S. and Peng, X., Effect of pyrolytic carbon content on microstructure and tribological properties of C/C-SiC brake composites fabricated by isothermal chemical vapor infiltration, Solid State Sci., 2012, no. 14, pp. 26–34.

    Article  Google Scholar 

  53. Koshelev, Yu.I., Kostikov, V.I., and Tatievskaya, E.M., Influence of admixtures on quality of CGP-type siliconized graphite, Adgez. Rasplavov Paika Mater., 1991, no. 25, pp. 90–94.

    CAS  Google Scholar 

  54. Bubnenkov, I.A., Koshelev, Yu.I., and Sorokin, O.Yu., Evaluation of possible use of carbon filler for the manufacture of siliconized products, Nov. Ogneupory, 2011, no. 12, pp. 32–37.

    Google Scholar 

  55. Tyumentsev, V.A., Ygafarov, Sh.Sh., and Fotiev, A.A., Phase formation during aging of silicocarbonous composite, Zh. Neorg. Khim., 1991, no. 7, pp. 1874–1876.

    Google Scholar 

  56. Gnesin, G.G., Karbidkremnievye materialy (Silicon-Carbide Materials), Moscow: Metallurgiya, 1977.

    Google Scholar 

  57. Jiang, G., Yang, J., and Xu, Y., Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration, Comp. Sci. Tech., 2008, no. 68, pp. 2468–2473.

    Article  CAS  Google Scholar 

  58. Krenkel, W. and Berndt, F., C/C-SiC composites for space applications and advanced friction systems, J. Mater. Sci. Eng., 2005, nos. 1–2, pp. 177–181.

    Article  Google Scholar 

  59. Wang, Y. and Houzheng, W., Microstructure of friction surface developed on carbon fiber reinforced carbonsilicon carbide (Cf/C–SiC), J. Eur. Ceram. Soc., 2012, no. 12, pp. 3509–3519.

    Article  Google Scholar 

  60. Krupka, R. and Kienzle, A., Fiber reinforced ceramic composite for brake discs, Proc. 18th Annual Brake Colloquium and Engineering Display, Troy, MI: Soc. Autom. Eng., 2000, no. P-358, pp. 67–69.

    Google Scholar 

  61. Schoppach, A., Petasch, T., and Heidenreich, B., Use of ceramic matrix composites in high precision laser communication optics, in European Conf. on Spacecraft Structures, Materials, and Mechanical Testing, Noordwijk: Eur. Space Agency, 2001, p.141.

    Google Scholar 

  62. Krenkel, W., Carbon fiber reinforced CMC for highperformance structures, J. Appl. Ceram. Tech., 2004, nos. 1–2, pp. 188–200.

    Google Scholar 

  63. Linus, U.J.T. and Singh, M., High-temperature oxidation behavior of reaction-formed silicon carbide ceramics, J. Mater. Res., 1995, vol. 10, no. 12, pp. 3232–3240.

    Article  Google Scholar 

  64. Singhal, S.C., Oxidation kinetics of hot-pressed silicon carbide, J. Mater. Sci., 1976, no. 11, pp. 1246–1253.

    Article  CAS  Google Scholar 

  65. Hu, P., Gui, K., and Yang, Y., Effect of SiC content on the ablation and oxidation behavior of ZrB2-based ultra high temperature ceramic composites, Materials, 2013, no. 6, pp. 1730–1744.

    Article  CAS  Google Scholar 

  66. Wuchina, E., Opila, E., and Opeka, M., UHTCs: ultrahigh temperature ceramic materials for extreme environment applications, Electrochem. Soc. Int., 2007, vol. 16, no. 4, pp. 30–36.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Makarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, N.A., Guseva, T.V., Bardin, N.G. et al. Silicificated multidimensional reinforced carbon-carbon materials for a wide range of applications. Inorg Mater 53, 1–16 (2017). https://doi.org/10.1134/S0020168516130033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516130033

Keywords

Navigation