Skip to main content
Log in

Modeling of the influence of defects on the electronic structure of silicon nanoclusters

  • Published:
Inorganic Materials Aims and scope

Abstract

The total and partial electron densities of states of defect-free and imperfect silicon clusters have been calculated by a semiempirical method. The local centers produced in the band gap of silicon by doping have been shown to be determined predominantly by the intrinsic states of silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morishita, T., Russo, S.P., Snook, I.K., Spencer, M.J.S., Nishio, K., and Mikami, M., First-principles study of structural and electronic properties of ultrathin silicon nanosheets, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, paper 045 419.

  2. Daldosso, N. and Pavesi, L., Nanosilicon photonics, Laser Photonics Rev., 2009, vol. 3, no. 6, pp. 508–534.

    Article  CAS  Google Scholar 

  3. Gollerand, B. and Kovalev, D., Polarized red and blue light emission from silicon-based nanostructures corre-lated with crystallographic axes, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 83, paper 233 303.

  4. Saxena, N., Kumar, P., Kabiraj, D., and Kanjilal, D., Opto-structural studies of well-dispersed silicon nanocrystals grown by atom beam sputtering, Nano-scale Res. Lett., 2012, vol. 7, pp. 547–554.

    Article  Google Scholar 

  5. Arad-Vosk, N. and Sa’ar, A., Radiative and nonradia-tive relaxation phenomena in hydrogen-and oxygen-terminated porous silicon, Nanoscale Res. Lett., 2014, vol. 9, pp. 47–53.

    Article  Google Scholar 

  6. Gelloz, B., Mentek, R., and Koshida, N., Optical properties of phosphorescent nanosilicon electrochem-ically doped with terbium, Phys. Status Solidi C, 2012, vol. 9, no. 12, pp. 2318–2321.

    Article  CAS  Google Scholar 

  7. Ogluzdin, V.E., Interpretation of the visible photolumi-nescence of inequisized silicon nanoparticles sus-pended in ethanol, Semiconductors, 2005, vol. 39, no. 8, pp. 884–890.

    Article  CAS  Google Scholar 

  8. Kurganskii, S.I. and Borsch, N.A., Geometric struc-ture and spectral characteristics of electronic states in silicon nanoparticles, Semiconductors, 2004, vol. 38, no. 5, pp. 560–564.

    Article  CAS  Google Scholar 

  9. Zacharias, C.R., Lemes, M.R., Júnior, A.D.P., and Orcero, D.S., Predicting structural models for silicon clusters, J. Comput. Chem., 2003, vol. 24, no. 7, pp. 869–875.

    Article  CAS  Google Scholar 

  10. Galashev, A.E., Izmodenov, I.A., Novruzov, A.N., and Novruzova, O.A., Computer study of physical proper-ties of silicon nanostructures, Semiconductors, 2007, vol. 41, no. 2, pp. 190–196.

    Article  CAS  Google Scholar 

  11. Korovin, S.B., Orlov, A.N., Prokhorov, A.M., Pusto-voi, V.I., Konstantaki, M., Koris, S., and Koudoumas, E., Nonlinear absorption in silicon nanocrystals, Kvan-tovaya Elektron. (Moscow), 2001, vol. 31, no. 9, pp. 817–820.

    Article  CAS  Google Scholar 

  12. Mashin, A.I. and Khokhlov, A.F., Multiple bonds in hydrogen-free amorphous silicon, Fiz. Tekh. Polupro-vodn. (S.-Peterburg), 1999, vol. 33, no. 8, pp. 1001–1004.

    Google Scholar 

  13. Van Buuren, T., Dinh, L.N., Chase, L.L., Siekhaus, W.J., and Terminello, L.J., Changes in the electronic proper-ties of Si nanocrystals as a function of particle size, Phys. Rev. Lett., 1998, vol. 80, no. 17, pp. 3803–3806.

    Article  Google Scholar 

  14. Burdov, V.A., Dependence of the optical gap of Si quantum dots on the dot size, Semiconductors, 2002, vol. 36, no. 10, pp. 1154–1158.

    Article  CAS  Google Scholar 

  15. Iori, F., Ossicini, S., Degoli, E., Luppi, E., Poli, R., Magri, R., Cantele, G., Trani, F., and Ninno, D., Dop-ing in silicon nanostructures, Phys. Status Solidi A, 2007, vol. 204, no. 5, pp. 1312–1317.

    Article  CAS  Google Scholar 

  16. Khirunenko, L.I., Pomozov, Yu.V., and Sosnin, M.G., Optical properties of silicon with a high boron content, Semiconductors, 2013, vol. 47, no. 2, pp. 269–274.

    Article  CAS  Google Scholar 

  17. Drozdov, N.A., Patrin, A.A., and Tkachev, V.D., Recombination emission from dislocations in silicon, Pis’ma Zh. Eksp. Teor. Fiz., 1976, vol. 23, no. 11, pp. 651–653.

    CAS  Google Scholar 

  18. Moliver, S.S., An open-shell method for neutral vacancy in silicon and diamond, Phys. Solid State, 2000, vol. 42, no. 4, pp. 673–682.

    Article  CAS  Google Scholar 

  19. Zacharias, C.R., Lemes, M.R., Júnior, A.D.P., and Orcero, D.S., Predicting structural models for silicon clusters, J. Comput. Chem., 2003, vol. 24, no. 7, pp. 869–875.

    Article  CAS  Google Scholar 

  20. Gusev, O.B., Poddubnyi, A.N., Prokof’ev, A.A., and Yassievich, I.N., Light emission from silicon nanocrys-tals, Semiconductors, 2013, vol. 47, no. 2, pp. 183–202.

    Article  CAS  Google Scholar 

  21. Kurova, N.V. and Burdov, V.A., Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P), Semiconductors, 2013, vol. 47, no. 12, pp. 1578–1582.

    Article  CAS  Google Scholar 

  22. Frish, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian, Rev. A.3, Pittsburg: Gaussian Inc., 1998.

    Google Scholar 

  23. Gubanov, V.A., Kurmaev, E.Z., and Ivanovskii, A.L., Kvantovaya khimiya tverdogo tela (Quantum Chemistry of Solids), Moscow: Nauka, 1984.

    Google Scholar 

  24. Shklyaev, A.A., Latyshev, A.V., and Ichikawa, M., 1.5–1.6 µm photoluminescence of silicon layers with a high density of lattice defects, Semiconductors, 2010, vol. 44, no. 4, pp. 432–438.

    Article  CAS  Google Scholar 

  25. Venger, E.F., Holiney, R.Yu., Matveeva, L.A., and Vasin, A.V., The influence of hydrogen plasma on the electroreflection spectrum and the spectrum of elec-tron states of porous silicon, Semiconductors, 2003, vol. 37, no. 1, pp. 103–107.

    Article  CAS  Google Scholar 

  26. Sobolev, N.A., Loshachenko, A.S., and Poloskin, D.S., Electrically active centers formed in silicon during the high-temperature diffusion of boron and aluminum, Semiconductors, 2013, vol. 47, no. 2, pp. 289–291.

    Article  CAS  Google Scholar 

  27. Lukjanitsa, V.V., Energy levels of vacancies and intersti-tial atoms in the band gap of silicon, Semiconductors, 2003, vol. 37, no. 4, pp. 404–413.

    Article  CAS  Google Scholar 

  28. Korsunskaya, N.E., Torchinskaya, T.V., Dzhumaev, B.R., Khomenkova, L.Yu., and Bulakh, B.M., Two porous silicon photoluminescence excitation sources, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1997, vol. 31, no. 8, pp. 908–911.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sokolenko.

Additional information

Original Russian Text © E.V. Sokolenko, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 9, pp. 938–945.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolenko, E.V. Modeling of the influence of defects on the electronic structure of silicon nanoclusters. Inorg Mater 51, 862–869 (2015). https://doi.org/10.1134/S0020168515080166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515080166

Keywords

Navigation