Skip to main content
Log in

Modeling of Structural Defects in Silicon Carbide

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper reports DFT calculations of the electron density in pure and imperfect silicon carbide clusters. The local levels produced in the band gap by doping are shown to be determined predominantly by intrinsic states of the silicon and carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lebedev, A.A. and Chelnokov, V.E., Wide-band-gap semiconductors for high-power electronics, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1999, vol. 33, no. 9, pp. 1096–1099.

  2. Sobolev, N.A., Defect engineering in implantation technology of silicon light-emitting structures with dislocation-related luminescence, Semiconductors, 2010, vol. 44, no. 1, pp. 1–23.

    Article  CAS  Google Scholar 

  3. Hamasaki, F. and Tsuruta, K., Structures and local electronic states of dislocation loop in 4H-SiC via a linear-scaling tight-binding study, Mater. Trans. JIM, 2011, vol. 52, no. 4, pp. 672–676. https://doi.org/10.2320/matertrans.MBW201024

    Article  CAS  Google Scholar 

  4. Lebedev, A.A., Deep-level centers in silicon carbide, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1999, vol. 33, no. 2, pp. 129–156.

  5. Ballandovich, V.S. and Mokhov, E.N., Annealing of deep boron centers in silicon carbide, Semiconductors, 2002, vol. 36, no. 2, pp. 160–166.

    Article  CAS  Google Scholar 

  6. Gorban', I.S. and Krokhmal’, A.P., The impurity optical absorption and conduction band structure in 6H-SiC, Semiconductors, 2001, vol. 35, no. 11, pp. 1242–1248.

    Article  CAS  Google Scholar 

  7. Alfieril, G. and Kimoto, T., Engineering the band gap of SiC nanotubes with a transverse electric field, Appl. Phys. Lett., 2010, vol. 97, paper 043 108. https://doi.org/10.1063/1.3469944

  8. Wu, X.L., Fan, J.Y., Qiu, T., Yang, X., Siu, G.G., and Chu, P.K., Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Phys. Rev. Lett., 2005, vol. 94, paper 026 102. doi.org/10.1103

  9. Knaup, J.M., Deák, P., and Frauenheim, T., Theoretical study of the mechanism of dry oxidation of 4H-SiC, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 71, paper 235 321. doi.org/10.1103

  10. Patrick, A.D., Dong, X., Allison, T.C., and Blaisten-Barojas, E., Silicon carbide nanostructures: a tight binding approach, J. Chem. Phys., 2009, vol. 130, paper 244 704. https://doi.org/10.1063/1.3157282

  11. Chen, C.W., Lee, M.-H., Chen, L.C., and Chend, K.H., Structural and electronic properties of wide band gap silicon carbon nitride materials—a first-principles study, Diamond Relat. Mater., 2004, vol. 13, pp. 1158–1165. https://doi.org/10.1016/j.diamond.2003.11.084

    Article  CAS  Google Scholar 

  12. Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev., 1964, vol. 136, no. 3, pp. B864–B871. doi.org/10.1103

  13. Arabshahi, H., Rezaee Rokn Abadi, M., and Ghorbani, E., First principles studies of band structure calculations of 6H-SiC and 4C-SiC using pseudopotential approaches, Int. J. Phys. Sci., 2011, vol. 6, no. 4, pp. 897–900.

    CAS  Google Scholar 

  14. Zhang, Y., Nishitani-Gamo, M., Xiao, C., and Ando, T., Synthesis of 3C-SiC nanowhiskers and emission of visible photoluminescence, J. Appl. Phys., 2002, vol. 91, no. 9, pp. 6066–6070. https://doi.org/10.1063/1.1468278

    Article  CAS  Google Scholar 

  15. Sokolenko, E.V., Modeling of IR absorption spectra of impurity defects in diamond nanoclusters, Inorg. Mater., 2014, vol. 50, no. 3, pp. 246–252. https://doi.org/10.1134/S0020168514030121

    Article  CAS  Google Scholar 

  16. Evarestov, R.A., Quantum Chemistry of Solids. LCAO Treatment of Crystals and Nanostructures, Berlin: Springer, 2012, 2nd ed.

    Book  Google Scholar 

  17. Kuwabara, H. and Yamada, S., Free-to-bound transition in β-SiC doped with boron, Phys. Status Solidi A, 1975, vol. 30, pp. 739–746. doihttps://doi.org/10.1002/pssa.2210300234

    Article  CAS  Google Scholar 

  18. Girka, A.I. and Mokhov, E.N., Vacancies in silicon carbide, Fiz. Tverd. Tela (S.-Peterburg), 1995, vol. 37, no. 11, pp. 3374–3381.

  19. Kukushkin, S.A., Nusupov, K.Kh., Osipov, A.V., Beisenkhanov, N.B., and Bakranova, D.I., X-ray reflectometry and simulation of the parameters of SiC epitaxial films on Si(111), grown by the atomic substitution method, Phys. Solid State, 2017, vol. 59, no. 5, pp. 1014–1026. https://doi.org/10.1134/S1063783417050195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sokolenko.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolenko, E.V., Slyusarev, G.V. Modeling of Structural Defects in Silicon Carbide. Inorg Mater 55, 19–31 (2019). https://doi.org/10.1134/S0020168519010151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519010151

Keywords:

Navigation