Skip to main content
Log in

Synthesis, structure, and properties of Ca3Co3.85M0.15O9 + δ (M = Ti–Zn, Mo, W, Pb, Bi) layered thermoelectrics

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared Ca3Co3.85M0.15O9 + δ (M = Ti–Zn, Mo, W, Pb, Bi) solid solutions, investigated their crystal structure and microstructure, assessed their thermal stability in air, and measured their thermal expansion, electrical conductivity, and thermoelectric power in air at temperatures from 300 to 1100 K. The results demonstrate that the Ca3Co3.85M0.15O9 + δ cobaltites are p-type semiconductors and that their unitcell parameters decrease with an increase in the number of d electrons in the 3d transition metal ion and with an increase in the average oxidation state of the cobalt. Their thermoelectric power increases with increasing temperature, reaching the highest value in the Ca3Co3.85Pb0.15O9 + δ solid solution: 380 μV/K at a temperature of 1100 K. The Ca3Co3.85Bi0.15O9 + δ solid solution has the largest thermoelectric power factor among the materials studied, 206 μW/(m K2) at a temperature of 1100 K, which is twice the power factor of the unsubstituted calcium cobaltite Ca3Co4O9 + δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koumoto, K., Terasaki, I., Murayama, N., et al., Oxide Thermoelectrics, Trivandrum: Research Signpost, 2002.

    Google Scholar 

  2. Fergus, J.W., Oxide materials for high temperature thermoelectric energy conversion, J. Eur. Ceram. Soc., 2012, vol. 32, pp. 525–540.

    Article  CAS  Google Scholar 

  3. Sedmidubsky, D., Jakes, V., Jankovsky, O., et al., Phase equilibria in Ca–Co–O system, J. Solid State Chem., 2012, vol. 194, pp. 199–205.

    Article  CAS  Google Scholar 

  4. Masset, A.C., Michel, C., Maignan, A., et al., Misfitlayered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 62, no. 1, pp. 166–175.

    Article  CAS  Google Scholar 

  5. Xu, L., Li, F., and Wang, Y., High-temperature transport and thermoelectric properties of Ca3Co4–x TixO9, J. Alloys Compd., 2010, vol. 501, pp. 115–119.

    Article  CAS  Google Scholar 

  6. Diez, J.C., Torres, M.A., Rasekh, Sh., et al., Enhancement of Ca3Co4O9 thermoelectric properties by Cr for Co substitution, Ceram. Int., 2013, vol. 39, pp. 6051–6056.

    Article  CAS  Google Scholar 

  7. Prasoetsopha, N., Pinitsoontorn, S., Kamwanna, T., et al., The effect of Cr substitution on the structure and properties of misfit-layered Ca3Co4–x CrxO9 + δ thermoelectric oxides, J. Alloys Compd., 2014, vol. 588, pp. 199–205.

    Article  CAS  Google Scholar 

  8. Pinitsoontorn, S., Lerssongkram, N., Harnwunggmoung, A., et al., Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9, J. Alloys Compd., 2010, vol. 503, pp. 431–435.

    Article  CAS  Google Scholar 

  9. Wang, Y., Sui, Y., Ren, P., et al., Strongly correlated properties and enhanced thermoelectric response in Ca3Co4–x MxO9 (M = Fe, Mn, and Cu), Chem. Mater., 2010, vol. 22, pp. 1155–1163.

    Article  CAS  Google Scholar 

  10. Liu, C.-J., Huang, L.-C., and Wang, J.-S., Improvement of the thermoelectric characteristics of Fe-doped misfit-layered Ca3Co4–x FexO9 + δ (x = 0, 0.05, 0.1, and 0.2), Appl. Phys. Lett., 2006, vol. 89, paper 204 102.

  11. Liu, Y., Li, H., Chen, H., and Ji, Y., The effect of Fe substitution on the electrical and thermal conductivity and thermopower of Ca3(FexCo1–x )4O9 synthesized by a sol–gel process, J. Phys. Chem. Solids, 2014, vol. 75, pp. 606–610.

    Article  CAS  Google Scholar 

  12. Klyndyuk, A.I. and Matsukevich, I.V., Synthesis and properties of Ca2.8Ln0.2Co4O9 + δ (Ln = La, Nd, Sm, Tb–Er) solid solutions, Inorg. Mater., 2012, vol. 48, no. 10, pp. 1052–1057.

    Article  CAS  Google Scholar 

  13. Klyndyuk, A.I., Krasutskaya, N.S., Matsukevich, I.V., et al., Thermoelectric properties of ceramics based on layered sodium and calcium cobaltites, Termoelektrichestvo, 2011, no. 4, pp. 49–55.

    Google Scholar 

  14. Klyndyuk, A.I. and Chizhova, Ye.A., Thermoelectric properties of the layered oxides LnBaCu(Co)FeO5 + δ (Ln = La, Nd, Sm, Gd), Funct. Mater., 2009, vol. 16, no. 1, pp. 17–22.

    CAS  Google Scholar 

  15. Xu, J., Wei, C., and Jia, K., Thermoelectric performance of textured Ca3–x YbxCo4O9–δ ceramics, J. Alloys Compd., 2010, vol. 500, pp. 227–230.

    Article  CAS  Google Scholar 

  16. Zhang, Y. and Zhang, J., Rapid reactive synthesis and sintering of textured Ca3Co4O9 ceramics by spark plasma sintering, J. Mater. Process. Technol., 2008, vol. 208, pp. 70–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Klyndyuk or I. V. Matsukevich.

Additional information

Original Russian Text © A.I. Klyndyuk, I.V. Matsukevich, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 9, pp. 1025–1031.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyndyuk, A.I., Matsukevich, I.V. Synthesis, structure, and properties of Ca3Co3.85M0.15O9 + δ (M = Ti–Zn, Mo, W, Pb, Bi) layered thermoelectrics. Inorg Mater 51, 944–950 (2015). https://doi.org/10.1134/S0020168515080105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515080105

Keywords

Navigation