Skip to main content
Log in

Synthesis and properties of materials based on layered calcium and bismuth cobaltites

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Materials based on layered calcium (Ca3Co4O9 + δ) and calcium-bismuth (Bi2Ca2Co1.7O y ) cobaltites were derived based on a technique of solid-phase reactions. Their thermal expansion, electrical conductivity, and thermoelectric power were found. It was demonstrated that these materials are p-type semiconductors with a coefficient of linear thermal expansion (11.4–12.8) × 10–6 K–1. It was found that the phase separation of the material leads to a reduction in the electrical conductivity and an increase in the Seebeck coefficient and power factor, which reaches its maximum value (0.24 mW m–1 K–2 at T = 1100 K) for materials containing approximately equal amounts of phases Ca2.7Bi0.3Co4O9+δ and Bi2Ca2Co1.7O y . Ffunctional characteristics of the thermoelectric material are evidence of its promising use in high temperature thermoelectric generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ioffe, A.F., Semiconductor Thermoelements, and Thermoelectric Cooling, London: Infosearch, 1957.

    Google Scholar 

  2. Shevelkov, A.V., Russ. Chem. Rev., 2008, vol. 77, no. 1, p. 1–19.

    Article  CAS  Google Scholar 

  3. Dmitriev, A.V. and Zvyagin, I.P., Phys.-Usp. 2010, vol. 53, no. 8, pp. 789–803.

    Article  CAS  Google Scholar 

  4. Oxide Thermoelectrics. Research Signpost, Koumoto, K., Terasaki, I., and Murayama, N., Eds., Trivandrum, India, 2002.

  5. Wang, H., Sun, X., Yan, X., et al., J. Alloys a. Comp., 2014, vol. 582, pp. 294–298.

    Article  CAS  Google Scholar 

  6. Sotelo, A., Rasekh, Sh., Madre, M.A., et al., J. Eur. Ceram. Soc., 2011, vol. 31, pp. 1763–1769.

    Article  CAS  Google Scholar 

  7. Zang, Y., Wang, S.L., Liu, A.P., et al., Appl. Phys. A., 2010, vol. 98, pp. 281–284.

    Article  Google Scholar 

  8. Sotelo, A., Guilmeau, E., Madre, M.A., et al., Bol. Soc. Esp. Ceram., 2008, vol. 47, no. 4, pp. 225–228.

    Article  CAS  Google Scholar 

  9. Masset, A.C., Michel, C., Maignan, A., et al., Phys. Rev. B, 2000, vol. 62, no. 1, pp. 166–175.

    Article  CAS  Google Scholar 

  10. Asahi, R., Sugiyama, J., and Tani, T., Phys. Rev. B, 2002, vol. 66, pp. 155103-1-155103-7.

  11. Tang, G., Tang, C., Xu, X., et al., Solid State Commun., 2010, vol. 150, pp. 1706–1709.

    Article  CAS  Google Scholar 

  12. Boullay, P., Domengis, B., Hervieu, M., et al., Chem. Mater., 1996, vol. 8, pp. 1482–1489.

    Article  CAS  Google Scholar 

  13. Takeuchi, T., Kondo, T., Soda, K., et al., J. Electr. Specr. a. Related Phen., 2004, vol. 137, pp. 595–599.

    Article  Google Scholar 

  14. Rasekh, Sh., Madre, M. A., Diez, J.C., et al., Bol. Soc. Esp. Ceram., 2010, vol. 49, no. 5, pp. 371–376.

    CAS  Google Scholar 

  15. Karppinen, M. and Yamauchi, H., Mater. Sci. Eng. R, 1999, vol. 26, pp. 51–96.

    Article  Google Scholar 

  16. Fergus, J.W., J. Eur. Ceram. Soc., 2012, vol. 32, pp. 525–540.

    Article  CAS  Google Scholar 

  17. Li, S., Funahashi, R., Matsubara, I., et al., Chem. Mater., 2000, vol. 12, pp. 2424-2427.

    Article  CAS  Google Scholar 

  18. Xu, G., Funahashi, R., Shikano, M., et al., Appl. Phys. Lett., 2002, vol. 80, pp. 3760–3762.

    Article  CAS  Google Scholar 

  19. Liu, Yuheng, Lin, Yuanhua, Jiang, Lei, et al., J. Electroceram., 2008, vol. 21, pp. 748–751.

    Article  CAS  Google Scholar 

  20. Park, J.W., Kwak, D.H., Yoon, S.H., and Choi, S.C., J. Ceram. Soc. Japan, 2009, vol. 117, no. 5, pp. 643–646.

    Article  CAS  Google Scholar 

  21. Klyndyuk, A.I., Krasutskaya, N.S., and Matsukevich, I.V., et al., J. Thermoelectricity, 2011, no. 4, pp. 47–53.

    Google Scholar 

  22. Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, pp. 1846–1851.

    CAS  Google Scholar 

  23. Gusarov, V.V. and Suvorov S.A., Russ. J. Appl. Chem., 1993, vol. 66, no. 3, pp. 1529–1534.

    CAS  Google Scholar 

  24. Klyndyuk, A.I. and Chizhova, E.A., Inorg. Mater., 2006, vol. 42, no. 5, pp. 550–561.

    Article  CAS  Google Scholar 

  25. Tripathi, A.K. and Lal, H.B., Mater. Res. Bull., 1980, vol. 15, no. 2, pp. 233–242.

    Article  CAS  Google Scholar 

  26. Powder Diffraction File, Swarthmore: Joint Committee on Powder Diffraction Standard: Card N 00-042–1467.

  27. Shannon, R.D. and Prewitt C.T., Acta Cryst., 1969, vol. B25, part 5, pp. 946–960.

    Google Scholar 

  28. Klyndyuk A.I. and Matsukevich, I.V., Inorg. Mater., 2015, vol. 51, no. 9, pp. 944–950.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Matsukevich.

Additional information

Original Russian Text © I.V. Matsukevich, A.I. Klyndyuk, E.A. Tugova, M.V. Tomkovich, N.S. Krasutskaya, V.V. Gusarov, 2015, published in Zhurnal Prikladnoi Khimii, 2015, Vol. 88, No. 8, pp. 1117-1123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsukevich, I.V., Klyndyuk, A.I., Tugova, E.A. et al. Synthesis and properties of materials based on layered calcium and bismuth cobaltites. Russ J Appl Chem 88, 1241–1247 (2015). https://doi.org/10.1134/S1070427215080030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215080030

Keywords

Navigation