Skip to main content
Log in

Growth of aluminum nitride films by plasma-enhanced atomic layer deposition

  • Published:
Inorganic Materials Aims and scope

Abstract

Aluminum nitride films have been grown by plasma-enhanced atomic layer deposition under self-limiting growth and CVD-like conditions. The films have been characterized by IR spectroscopy, ellipsometry, and Auger exposure spectroscopy. We have examined the influence of the deposition temperature, the reactor purge time after exposure to trimethylaluminum vapor, and the plasma exposure time on the growth rate and composition of the films. Under the deposition conditions studied, the growth rate ranged from 0.1 to 0.26 nm per cycle and the refractive index of the films was 1.52 to 1.98. We obtained films with an aluminum to nitrogen atomic ratio near unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silveira, E., Freitas, J.A., Schujman, S.B., and Schowalter, L.J., AlN bandgap temperature dependence from its optical properties, J. Cryst. Growth, 2008, vol. 310, pp. 4007–4010.

    Article  CAS  Google Scholar 

  2. Junior, A.F. and Shanafield, D.J., Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics, Ceramica, 2004, vol. 50, no. 315, pp. 247–253.

    Google Scholar 

  3. Sowers, A.T., Christman, J.A., Bremser, M.D., Ward, B.L., and Davis, R.F., Thin films of aluminium nitride and aluminum gallium nitride for cold cathode application, Appl. Phys. Lett., 1997, vol. 71, no. 16, pp. 2289–2291.

    Article  CAS  Google Scholar 

  4. Nikiforov, D.K., Korzhavyi, A.P., and Nikiforov, K.G., Modeling of charge carrier injection and emission processes in aluminum nitride-based nanostructures, Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii INTERMATIC (Proc. INTERMATIC Int. Sci. Technol. Conf.), 2012, vol. 2, pp. 58–60.

    Google Scholar 

  5. Shi, S.C., Chen, C.F., Li, H.Y., Lo, J.T., Lan, Z.H., Chen, K.H., and Chen, L.C., Field emission from quasi-aligned aluminium nitride nanotips, Appl. Phys. Lett., 2005, vol. 87, no. 7, pp. 3109–3112.

    Article  Google Scholar 

  6. Chen, Z., Newman, S., Brown, D., Chung, R., Keller, S., Mishra, U.K., Denbaars, S.P., and Nakamura, S., High quality AlN grown on SiC by metal organic chemical vapor deposition, Appl. Phys. Lett., 2008, no. 93, paper 191906.

    Google Scholar 

  7. Bosund, M., Mattila, P., Aierken, A., Hakkarainen, T., Koskenvaara, H., Sopanen, M., Airaksinen, V.M., and Lipsanen, H., GaAs surface passivation by plasmaenhanced atomic-layer-deposited aluminum nitride, Appl. Surf. Sci., 2010, vol. 256, no. 24, pp. 7434–7437.

    Article  CAS  Google Scholar 

  8. Chen, C., Chen, D.J., Xie, Z.L., Han, P., Zhang, R., Zheng, Y.D., Li, Z.H., Jiao, G., and Chen, T.S., Effects of an AlN passivation layer on the microstructure and electronic properties of AlGaN/GaN heterostructures, Appl. Phys. A, 2008, vol. 90, no. 3, pp. 447–449.

    Article  CAS  Google Scholar 

  9. Sen Huang, Qimeng Jiang, Shu Yang, Zhikai Tang, and Chen, K.J., Mechanism of PEALD-grown AlN passivation for AlGaN/GaN HEMTs: compensation of interface traps by polarization charges, Electron Device Lett., 2013, vol. 34, no. 2, pp. 193–195.

    Article  Google Scholar 

  10. Ivaldi, P., Abergel, J., Arndt, G., Robert, P., Andreucci, P., Blanc, H., Hentz, S., and Defay, E., 50 nm thick AlN resonant micro-cantilever for gas sensing application, Frequency Control Symposium (FCS), 2010, pp. 81–84.

    Google Scholar 

  11. Samman, A., Gebremariam, S., Rimai, L., Zhang, X., Hangas, J., and Auner, G.W., Platinum–aluminum nitride–silicon carbide diodes as combustible gas sensors, J. Appl. Phys., 2000, no. 87, pp. 3101–3107.

    Google Scholar 

  12. Taniyasu, Y., Kasu, M., and Makimoto, T., An aluminum nitride light-emitting diode with a wavelength of 210 nanometers, Nature, 2006, no. 441, pp. 325–328.

    Google Scholar 

  13. Dung-Sheng Tsai, Wei-Cheng Lien, Der-Hsien Lien, Kuan-Ming Chen, Meng-Lin Tsai, Senesky, D.G., Yueh-Chung Yu, Pisano, A.P., and Jr-Hau He, Solarblind photodetectors for harsh electronics, Sci. Rep., 2013, vol. 4, paper 2628.

    Google Scholar 

  14. Kakanakova-Georgieva, A., Nilsson, D., and Janzén, E., High-quality AlN layers grown by hot-wall MOCVD at reduced temperatures, J. Cryst. Growth, 2012, vol. 338, no. 1, pp. 52–56.

    Article  CAS  Google Scholar 

  15. Bouchkour, Z., Tristant, P., Thune, E., Dublanche-Tixier, C., and Jaoul, C., Aluminum nitride nano-dots prepared by plasma enhanced chemical vapor deposition on Si(111), Surf. Coat. Technol., 2011, no. 205, pp. S586–S591.

    Google Scholar 

  16. Pat, S. and Kokkokoglu, M., Characterization of deposited AlN thin films at various nitrogen concentrations by rf reactive sputtering, Optoelectron. Adv. Mater., Rapid Commun., 2010, vol. 4, no. 6, pp. 855–858.

    CAS  Google Scholar 

  17. Yong-Ju Lee and Sang-Won Kang, Growth of aluminum nitride thin films prepared plasma-enhanced atomic layer deposition, Thin Solid Films, 2004, vol. 446, no. 2, pp. 227–231.

    Article  Google Scholar 

  18. Ozgit, C., Donmez, I., Alevli, M., and Biyikli, N., Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition, Thin Solid Films, 2012, no. 520, pp. 2750–2755.

    Google Scholar 

  19. Alevli, M., Ozgit, C., Donmez, I., and Biyikli, N., Optical properties of AlN thin films grown by plasma enhanced atomic layer deposition, J. Vac. Sci. Technol., A, 2012, vol. 30, no. 2, paper 021506.

    Article  Google Scholar 

  20. Brown, W., Foote, C., Iverson, B., and Anslyn, E., Organic Chemistry, Belmont: Cengage Learning, 2010, p. 1232.

    Google Scholar 

  21. Yate, L., Caicedo, J.C., Hurtado-Macias, A., Espinoza-Beltrán, F.J., Zambrano, G., Muñoz-Saldaña, J., and Prieto, P., Composition and mechanical properties of AlC, AlN and AlCN thin films obtained by r.f. magnetron sputtering, Surf. Coat. Technol., 2009, no. 203, pp. 1904–1907.

    Google Scholar 

  22. Manzoli, M., Boccuzzi, F., Chiorino, A., Vindigni, F., Deng, W., and Flytzani-Stephanopoulos, M., Al–CO spectroscopic features and reactivity of CO adsorbed on different Au/CeO2 catalysts, J. Catal., 2007, vol. 245, pp. 308–315.

    Article  CAS  Google Scholar 

  23. Perros, A.P., Hakola, H., Sajavaara, T., Huhtio, T., and Lipsanen, H., Influence of plasma chemistry on impurity incorporation in AlN prepared by plasma enhanced atomic layer deposition, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 50, paper 505502.

    Article  Google Scholar 

  24. Zhang, Y. and Binner, J., Hydrolysis process of a surface treated aluminum nitride powder—a FTIR study, J. Mater. Sci. Lett., 2002, no. 21, pp. 803–805.

    Google Scholar 

  25. Fathima-Parven, M., Umapathy, S., Dhanalakshmi, V., and Anbarasan, R., Synthesis and characterizations of nano sized Al(OH)3 in the presence of aniline as a dispersing agent, Indian J. Sci., 2013, vol. 3, no. 8, pp. 97–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tarala.

Additional information

Original Russian Text © V.A. Tarala, A.S. Altakhov, M.Yu. Shevchenko, D.P. Valyukhov, S.V. Lisitsyn, V.Ya. Martens, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 7, pp. 795–802.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarala, V.A., Altakhov, A.S., Shevchenko, M.Y. et al. Growth of aluminum nitride films by plasma-enhanced atomic layer deposition. Inorg Mater 51, 728–735 (2015). https://doi.org/10.1134/S0020168515070158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515070158

Keywords

Navigation