Skip to main content
Log in

Microwave-assisted hydrothermal process for the preparation of SnO from an ammoniacal Sn6O4(OH)4 suspension

  • Published:
Inorganic Materials Aims and scope

Abstract

SnO powder with a specific surface area of 2 m2/g has been prepared by microwave-assisted hydrothermal processing of an ammoniacal Sn6O4(OH)4 suspension. We have examined the effect of pressure rise rate in a reaction mixture on the surface morphology and photocatalytic activity of SnO. Raising the pressure has been shown to reduce the SnO synthesis time, without influencing the surface morphology of SnO or its photocatalytic activity for methyl orange photodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X., Yang, Y.J., and Jao, J.N., Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route, Chin. Chem. Lett., 2013, vol. 24, pp. 1–6.

    Article  Google Scholar 

  2. Hassan Farooq, M., Riaz Hassian, Linge Zhang, Aslam, I., Tanveer, M., Shah, M.W., and Zubair Iqbal, Fabrication, characterization and magnetic properties of Mn-doped SnO nanostructures via hydrothermal method, Mater. Lett., 2014, vol. 131, pp. 350–353.

    Article  Google Scholar 

  3. Zubair Iqbal, M., Fengping Wang, Ting Feng, Hailei Zhao, Yasir Rafique, M., Rafi-ud-Din, Hassan Farooq, Qurat u lain Javed, and DilFaraz Khan, Facile synthesis of self-assembled SnO nano-square sheets and hydrogen absorption characteristics, Mater. Res. Bull., 2012, vol. 47, pp. 3902–3907.

    Article  Google Scholar 

  4. Sheng-Chang Wang, Ray Kuang Chiang, and Din-jie Hu, Morphological and phase control of tin oxide single-crystals synthesized by dissolution and recrystallization of bulk SnO powders, J. Ceram. Soc., 2011, vol. 31, pp. 2447–2451.

    Article  Google Scholar 

  5. Ying Liang, Huiwen Zheng, and Bin Fang, Synthesis and characterization of SnO with controlled flower like microstructures, Mater. Lett., 2013, vol. 108, pp. 235–238.

    Article  CAS  Google Scholar 

  6. Hu, Y., Xu, K., Kong, L., Jiang, H., Zhang, L., and Li, C., Flame synthesis of single crystalline SnO nanoplateles lithium-ion batteries, Chem. Eng. J., 2013, vol. 242, pp. 220–225.

    Article  Google Scholar 

  7. Uchiyama, H., Hosono, E., Honma, I., Zhou, H.S., and Imai, H., A nanoscale meshed electrode of singlecrystalline SnO for lithium-ion rechargeable batteries, Electrochem. Commun., 2008, vol. 10, pp. 52–55.

    Article  CAS  Google Scholar 

  8. Yang, J., Takeda, Y., Imanishi, N., Xie, T.Y., and Yamamoto, O., Morphology modification and irreversibility compensation for SnO anodes, J. Power Source, 2001, vols. 97–98, pp. 216–218.

    Article  Google Scholar 

  9. Kuznetsova, S.A., Pichugina, A.A., and Kozik, V.V., Microwave synthesis of a photocatalytically active SnO-based material, Inorg. Mater., 2014, vol. 50, no. 4, pp. 387–391.

    Article  CAS  Google Scholar 

  10. Jeong Ho Shin, Jae Yong Song, Young Heon Kim, and Hyum Min Park, Low temperature and self-catalytic growth of tetragonal SnO nanobranch, Mater. Lett., 2010, vol. 64, pp. 1120–1122.

    Article  CAS  Google Scholar 

  11. Kangkang Men, Jiajia Ning, Quanqin Dai, Dongmei Li, Bingbing Liu, Yu, W.W., and Bo Zou, Synthesis of SnO crystals with shape control via ligands interaction and limited ligand protection, Colloids Surf., A, 2010, vol. 363, pp. 30–34.

    Article  Google Scholar 

  12. Giefers, H., Parsch, F., and Wortmann, G., Structural study of SnO at high pressure, Phys. B (Amsterdam, Neth.), 2006, vol. 373, pp. 76–81.

    Article  CAS  Google Scholar 

  13. Zubair Iqbal, M., Fengping Wang, Rafi-ud-Din, Yasir Rafique, M., Quarat-ul-ain Javed, Asad Ullah, and Hongmei Qiu, Synthesis of novel clinapinacoid structure of stannous oxide and hydrogen absorption characteristics, Mater. Lett., 2012, vol. 78, pp. 50–53.

    Article  Google Scholar 

  14. Balakhonov, S.V., Ivanov, V.K., Baranchikov, A.V., and Churagulov, B.R., A comparative analysis of the physicochemical properties of vanadium-oxide-based nanomaterials prepared by hydrothermal and microwaveassisted hydrothermal processes, Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 4, pp. 66–74.

    Google Scholar 

  15. Byrappa, K. and Yoshimura, M., Handbook of Hydrothermal Technology, New York: William Andrew, 2001.

    Google Scholar 

  16. Fialko, M.B., Neizotermicheskaya kinetika v termicheskom analize (Nonisothermal Kinetics in Thermal Analysis), Tomsk: Tomsk. Gos. Univ., 1981.

    Google Scholar 

  17. Kazitsina, L.A. and Kupletskaya, N.B., Primenenie UF-, IK- i YaMR-spektroskopii v organicheskoi khimii (Application of UV, IR, and NMR Spectroscopies in Organic Chemistry), Moscow: Vysshaya Shkola, 1971.

    Google Scholar 

  18. Davydov, A.A., IK-spektroskopiya v khimii poverkhnosti okislov (IR Spectroscopy and Chemistry of Oxide Surfaces), Novosibirsk: Nauka, 1984.

    Google Scholar 

  19. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pichugina.

Additional information

Original Russian Text © S.A. Kuznetsova, A.A. Pichugina, V.V. Kozik, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 5, pp. 490–495.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, S.A., Pichugina, A.A. & Kozik, V.V. Microwave-assisted hydrothermal process for the preparation of SnO from an ammoniacal Sn6O4(OH)4 suspension. Inorg Mater 51, 436–440 (2015). https://doi.org/10.1134/S002016851504007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851504007X

Keywords

Navigation