Skip to main content
Log in

Phase formation processes in the NiO-CuO-Fe2O3-Cr2O3 system upon salt decomposition

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents a comparative evaluation of phase formation in the NiO-CuO-Fe2O3-Cr2O3 system during salt decomposition reactions. A spinel phase has been shown to form in all of the materials studied. The structure of the compounds obtained has been investigated by X-ray diffraction and low-temperature nitrogen adsorption measurements. The results demonstrate that synthesis in the presence of an organic precursor allows fine-particle spinel materials to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levin, B.E., Tret’yakov, Yu.D., and Letyuk, L.M., Fiziko-khimicheskie osnovy polucheniya, svoistva i primenenie ferritov (Ferrites: Physicochemical Principles of Preparation, Properties, and Applications), Moscow: Metallurgiya, 1979.

    Google Scholar 

  2. Baruwati, B., Rana, R.K., and Manorama, S.V., Further insights in the conductivity behavior of nanocrystalline NiFe2O4, J. Appl. Phys., 2007, vol. 101, paper 014 302.

  3. Braestrup, F. and Hansen, K.K., NiCrxFe2 − x O4 as cathode materials for electrochemical reduction of NOx, J. Solid State Electrochem., 2010, vol. 14, pp. 157–166.

    Article  CAS  Google Scholar 

  4. Konyukhov, V.Yu., Chitaeva, V.E., Kuleshova, O.P., and Naumov, V.A., Kinetics of deep ethanol oxidation on a copper chromium oxide catalyst, Kinet. Katal., 1993, vol. 34, no. 6, pp. 1051–1053.

    CAS  Google Scholar 

  5. Davydova, L.P., Fenelonov, V.B., Sadykov, V.A., Plyasova, L.M., and Anufrienko, V.F., On the nature of the active component of supported copper oxide catalysts in complete oxidation reactions, Kinet. Katal., 1993, vol. 34, no. 1, pp. 99–103.

    CAS  Google Scholar 

  6. Kim, J.S., Lee, K.H., and Cheon, C.I., Crystal structure and the effect of annealing atmosphere on the dielectric properties of the spinels MgAl2O4, NiFe2O4, and NiAlFeO4, J. Electroceram., 2009, vol. 22, pp. 233–237.

    Article  CAS  Google Scholar 

  7. Bid, S., Sahu, P., and Pradhan, S.K., Microstructure characterization of mechanosynthesized nanocrystalline NiFe2O4 by Rietveld’s analysis, Phys. E, 2007, vol. 39, pp. 175–184.

    Article  CAS  Google Scholar 

  8. Dollase, W.A. and O’Neill, H.St.C., The spinels CuCr2O4 and CuRh2O4, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1997, vol. 53, pp. 657–659.

    Article  Google Scholar 

  9. Gunjakar, J.L., More, A.M., Gurav, K.V., and Lokhande, C.D., Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets, Appl. Surf. Sci., 2008, vol. 254, pp. 5844–5848.

    Article  CAS  Google Scholar 

  10. Nordhei, C., Ramstad, A.L., and Nicholson, D.G., Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution, Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 1053–1066.

    Article  CAS  Google Scholar 

  11. Padmanaban, N., Avasthi, B.N., and Ghose, J., Solid state studies on rhodium-substituted CuCr2O4 spinel oxide, J. Solid State Chem., 1990, vol. 86, pp. 286–292.

    Article  CAS  Google Scholar 

  12. Kennedy, B.J. and Zhou, Q., The role of orbital ordering in the tetragonal-to-cubic phase transition in CuCr2O4, J. Solid State Chem., 2008, vol. 181, pp. 2227–2230.

    Article  CAS  Google Scholar 

  13. Chen, L., Shen, Y., and Bai, J., Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters, Mater. Lett., 2009, vol. 63, pp. 1099–1101.

    Article  CAS  Google Scholar 

  14. Gomes, J., Sousa, M.H., Tourinho, F.A., Aquino, R., Silva, G.J., Depeyrot, J., Dubois, E., and Perzynski, R., Synthesis of core-shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis, J. Phys. Chem. C, 2008, vol. 112, pp. 6220–6227.

    Article  Google Scholar 

  15. Bousquet-Berthelin, C., Chaumont, D., and Stuerga, D., Flash microwave synthesis of trevorite nanoparticles, J. Solid State Chem., 2008, vol. 181, pp. 616–622.

    Article  CAS  Google Scholar 

  16. Priyadharsini, P., Pradeep, A., and Chandrasekaran, G., Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni-Zn, J. Magn. Magn. Mater., 2009, vol. 321, pp. 1898–1903.

    Article  CAS  Google Scholar 

  17. Chen, L., Dai, H., Shen Yo, and Bai Ju, Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route, J. Alloys Compd., 2010, vol. 491, pp. L33–L38.

    Article  CAS  Google Scholar 

  18. Jacob, J., Khadar, M.A., Lonappan, A., and Mathew, K.T., Microwave dielectric properties of nanostructured nickel ferrite, Bull. Mater. Sci., 2008, vol. 31, no. 6, pp. 847–851.

    Article  CAS  Google Scholar 

  19. Zhang, H.E., Zhang, B.F., Wang, G.F., Dong, X.H., and Gao, Y., The structure and magnetic properties of Zn1−x NixFe2O4 ferrite nanoparticles prepared by solgel auto-combustion, J. Magn. Magn. Mater., 2007, vol. 312, pp. 126–130.

    Article  CAS  Google Scholar 

  20. Ramalho, M.A.F., Gama, L., Antonio, S.G., PaivaSantos, C.O., Miola, E.J., Kiminami, R.H.G.A., and Costa, A.C.F.M., X-ray diffraction and Mössbauer spectra of nickel ferrite prepared by combustion reaction, J. Mater. Sci., 2007, vol. 42, pp. 3603–3606.

    Article  CAS  Google Scholar 

  21. Shabel’skaya, N.P., Talanov, M.V., Zakharchenko, I.N., Kiryushina, R.O., Ul’yanov, A.K., and Reznichenko, L.A., Formation of MCr2O4 (M = Co, Ni, Zn, Cd, Mg) chromites, Izv. Vyssh. Uchebn. Zaved. Ser. Khim. Khim. Tekhnol., 2013, vol. 56, no. 8, pp. 59–62.

    Google Scholar 

  22. Yé, Z.-G., Crottaz, O., Vaudano, F., Kubel, F., Tissot, P., and Schmid, H., Single crystal growth, structure refinement, ferroelastic domains and phase transitions of the hausmannite CuCr2O4, Ferroelectrics, 1994, vol. 162, no. 1, pp. 103–118.

    Article  Google Scholar 

  23. Shabel’skaya, N.P., Ivanov, V.V., Talanov, V.M., Reznichenko, L.A., Talanov, M.V., and Ul’yanov, A.K., Synthesis and phase formation in the NiO-CuO-Fe2O3-Cr2O3 system, Steklo Keram., 2014, no. 1, pp. 20–24.

    Google Scholar 

  24. Talanov, V.M., Energeticheskaya kristallokhimiya mnogopodreshetochnykh kristallov (Energetic Crystal Chemistry of Multisublattice Crystals), Rostovsk. Univ., 1986.

    Google Scholar 

  25. Wells, A., Structural Inorganic Chemistry, Oxford: Clarendon, 1984, vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Shabel’skaya.

Additional information

Original Russian Text © N.P. Shabel’skaya, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 11, pp. 1205–1209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabel’skaya, N.P. Phase formation processes in the NiO-CuO-Fe2O3-Cr2O3 system upon salt decomposition. Inorg Mater 50, 1114–1118 (2014). https://doi.org/10.1134/S002016851411017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851411017X

Keywords

Navigation