Skip to main content
Log in

Tubular alumina as a key component of new thermally stable ceramic materials

  • Published:
Inorganic Materials Aims and scope

Abstract

Using scanning electron microscopy and X-ray diffraction, we have examined processes that occur in tubular alumina during heating in air to temperatures in the range 1100–1200°C. The results demonstrate that, starting at temperatures between 600 and 700°C, α-Al2O3 (corundum) is formed in the solid material. Heating the tubular material to 1000°C converts some of the starting alumina into χ-Al2O3 and some into α-Al2O3. The samples calcined for 2–10 h at 1100°C contain α-Al2O3 and æ-Al2O3. Heating to 1000–1300°C has no effect on the shape of the tubular particles. The ceramics obtained in this way are stable in contact with water. When tubular alumina with a SiCl4 vapor hydrolysis product deposited on its surface is heat-treated at temperatures in the range 1100–1300°C, we observe the formation of mullite (Al2O3 · 2SiO2) on the surface of the tubular particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berdonosov, S.S., Baronov, S.B., Kuz’micheva, Yu.V., et al., Hollow alumina macrotubes, Inorg. Mater., 2001, vol. 37, no. 10, pp. 1037–1040.

    Article  CAS  Google Scholar 

  2. Berdonosov, S.S., Baronov, S.B., Kuz’micheva, Yu.V., et al., Hollow macrotubes: a new, elegantly textured form of amorphous alumina, Vestn. Mosk. Univ., Ser. 2: Khim., 2002, vol. 43, no. 1, pp. 64–67.

    CAS  Google Scholar 

  3. Berdonosov, S.S., Melikhov, I.V., Baronov, S.B., et al., The route of thermohydrolysis resulting in tubular alumina forms, Dokl. Chem., 2002, vol. 383, nos. 1–3, pp. 62–71.

    Article  CAS  Google Scholar 

  4. Baronov, S.B., Berdonosov, S.S., Kuz’micheva, Yu.V., and Melikhov, I.V., Self-organization of alumina: from nanoparticles to tubular forms, Izv. Akad. Nauk, Ser. Fiz., 2003, vol. 67, no. 7, pp. 912–914.

    CAS  Google Scholar 

  5. Alumina, Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1.

  6. Bondar’, I.A., Glushkova, V.B., Tseitlin, P.A., et al., Phase transitions of Al2O3, Izv. Akad. Nauk SSSR, Neorg. Mater., 1971, vol. 7, no. 8, pp. 1367–1370.

    Google Scholar 

  7. Okumiya, M., Yamaguchi, G., Yamada, O., and Ono, S., The phase transformations of alumina in hydrothermal conditions, Bull. Chem. Soc. Jpn., 1971, vol. 44, pp. 418–425.

    Article  CAS  Google Scholar 

  8. Okumiya, M. and Yamaguchi, G., Electron-irradiation-induced phase transformation in alumina, Bull. Chem. Soc. Jpn., 1971, vol. 44, pp. 1567–1570.

    Article  CAS  Google Scholar 

  9. Lippens, B.C. and Steggerda, J.J., in Physical and Chemical Aspects of Adsorbents and Catalysts, Linsen, B.G., Ed., London: Academic, 1970.

  10. Ismailov, Z.R., Shkrabina, R.A., and Koryabkina, N.A., Alyumosilikatnye nositeli: proizvodstvo, svoistva i primenenie v kataliticheskikh protsessakh zashchity okruzhayushchei sred. Analit. obzor (Aluminosilicate Carriers: Fabrication, Properties, and Application in Catalytic Processes for Environment Protection-An Analytical Review), Novosibirsk: Inst. Kataliza Sib. Otd. Ross. Akad. Nauk, 1998.

    Google Scholar 

  11. Zhelankin, V.N., Dronova, N.D., and Oboznenko, Yu.V., Thermal decomposition of aluminum oxychloride and hydrous alumina, Zh. Neorg. Khim., 1972, vol. 17, no. 3, pp. 599–601.

    CAS  Google Scholar 

  12. Sinitsky, A.S., Ketsko, V.A., Pentin, I.V., et al., High-temperature dehydration of hydrophilic oxides ZrO2 and Al2O3, Russ. J. Inorg. Chem., 2003, vol. 48, no. 3, pp. 406–409.

    Google Scholar 

  13. Trakhtenberg, L.I., Gerasimov, G.N., Matyuk, V.M., and Potapov, V.K., Synthesis of alumina nanostructures on a silicon surface by vacuum chemical deposition from aluminum nitride, Russ. J. Phys. Chem. A, 2005, vol. 79, no. 9, pp. 1528–1530.

    CAS  Google Scholar 

  14. Gusarov, V.V., Malkov, A.A., Ishutina, Zh.N., and Malygin, A.A., Phase relations in a silica film on alumina, Pis’ma Zh. Tekh. Fiz., 1998, vol. 24, no. 1, pp. 3–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Berdonosov.

Additional information

Original Russian Text © S.S. Berdonosov, N.B. Prosvetkin, Yu.V. Alekseeva, I.V. Melikhov, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 10, pp. 1080–1085.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdonosov, S.S., Prosvetkin, N.B., Alekseeva, Y.V. et al. Tubular alumina as a key component of new thermally stable ceramic materials. Inorg Mater 50, 997–1002 (2014). https://doi.org/10.1134/S0020168514100057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514100057

Keywords

Navigation