Skip to main content
Log in

NbO disintegration by surfactant-assisted high-energy ball milling

  • Published:
Inorganic Materials Aims and scope

Abstract

Macrocrystalline niobium monoxide powder has been disintegrated to an average nanoparticle size of 20 ± 10 nm by high-energy milling in a planetary ball mill. X-ray diffraction data showed that, after milling, the particles retained an ordered cubic crystal structure with space group \(Pm\bar 3m\), containing structural vacancies in both the metallic (25 at %) and nonmetallic (25 at %) sublattices. Analysis of diffraction line broadening as a function of the magnitude of the scattering vector indicated lattice strain anisotropy in the crystallographic directions [100], [110], and [111]. According to the diffraction line broadening data, the size of the nanoparticles in the [100] direction was smaller than those in the [110] and [111] directions. The use of surfactants enabled us to obtain a stable suspension of niobium monoxide nanoparticles in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rempel, A.A., Sulfide-, carbide-, and oxide-based hybrid nanoparticles, Izv. Akad. Nauk, Ser. Fiz., 2013, no. 4, p. 857.

    Google Scholar 

  2. Schaefer, H.-E., Nanoscience, Berlin: Springer, 2010.

    Book  Google Scholar 

  3. Rempel, A.A., Nanotechnologies, properties, and applications of nanostructured materials, Usp. Khim., 2007, vol. 76, no. 5, p. 474.

    Article  Google Scholar 

  4. Ananikov, V.P. and Beletskaya, I.P., Preparation of metal “nanosalts” and their application in catalysis: heterogeneous and homogeneous pathways, Dalton Trans., 2011, vol. 40, p. 4011.

    Article  CAS  Google Scholar 

  5. Barber, J. and Tran, P.D., From natural to artificial photosynthesis, J. R. Soc. Interface, 2013, vol. 10, p. 20120984.

    Article  Google Scholar 

  6. Schöllmann, V., Johansson, J., Andersen, K., and Haviland, D.B., Coulomb blockade effects in anodically oxidized titanium wires, J. Appl. Phys., 2000, vol. 88, no. 11, p. 6549.

    Article  Google Scholar 

  7. Tret’yakov, Yu.D., Self-organization processes in materials chemistry, Usp. Khim., 2003, vol. 72, no. 8, p. 731.

    Google Scholar 

  8. Rempel, A.A. and Magerl, A., Non-periodicity in nanoparticles with close-packed structures, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2010, vol. 66, p. 479.

    Article  CAS  Google Scholar 

  9. Vorokh, A.S. and Rempel’, A.A., Atomic structure of cadmium sulfide nanoparticles, Phys. Solid State, 2007, vol. 49, no. 1, p. 148.

    Article  CAS  Google Scholar 

  10. Brauer, G., Die oxyde des niobs, Z. Anorg. Allg. Chem., 1941, vol. 248, no. 1, p. 1.

    Article  CAS  Google Scholar 

  11. Eyring, L. and Keeffe, M.O., The Chemistry of Extended Defects in Non-Metallic Solids, Amsterdam: North-Holland, 1970, pp. 523–540.

    Google Scholar 

  12. Elliott, R.P., Columbium-oxygen system, Trans. Am. Soc. Met., 1959, vol. 52, p. 990.

    Google Scholar 

  13. Hulm, J.K., Jones, C.K., Hein, R.A., and Gibson, J.W., Superconductivity in the TiO and NbO systems, J. Low Temp. Phys., 1972, vol. 7, nos. 3–4, p. 291.

    Article  CAS  Google Scholar 

  14. Motchenbacher, C.A., Robison, J.W., Higgins, B.J., and Fonville, T.J., US Patent 7 157 073 B2.

  15. Valeeva, A.A., Schroettner, H., and Rempel, A.A., Preparation of nanocrystalline VOy by high-energy ball milling, Inorg. Mater., 2011, vol. 47, no. 4, p. 408.

    Article  CAS  Google Scholar 

  16. Rempel’, A.A., Rempel’, S.V., and Gusev, A.I., Quantitative assessment of homogeneity of nonstoichiometric compounds, Dokl. Phys. Chem., 1999, vol. 369, nos. 4–6, p. 321.

    Google Scholar 

  17. Rempel, A.A. and Gusev, A.I., Preparation of disordered and ordered highly nonstoichiometric carbides and evaluation of their homogeneity, Phys. Solid State, 2000, vol. 42, no. 7, p. 1243.

    Article  Google Scholar 

  18. Warren, B.E., X-ray diffraction, New York: Dover, 1990.

    Google Scholar 

  19. James, R.W., The Optical Principles of the Diffraction of X-Rays, London: Bell, 1950.

    Google Scholar 

  20. Hall, W.H., X-ray line broadening in metals, Proc. Phys. Soc. London: Sect. A, 1949, vol. 62, part 11, no. 359, p. 741.

    Article  Google Scholar 

  21. Hall, W.H. and Williamson, G.K., The diffraction pattern of cold worked metals: I. The nature of extinction, Proc. Phys. Soc. London: Sect. B, 1951, vol. 64, part 11, no. 383, p. 937.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Valeeva.

Additional information

Original Russian Text © A.A. Valeeva, H. Schroettner, A.A. Rempel, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 4, pp. 430–435

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valeeva, A.A., Schroettner, H. & Rempel, A.A. NbO disintegration by surfactant-assisted high-energy ball milling. Inorg Mater 50, 398–403 (2014). https://doi.org/10.1134/S0020168514040177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514040177

Keywords

Navigation