Skip to main content
Log in

Self-assembly of fractal magnetite-silica aggregates in a static magnetic field

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper examines the mechanism underlying the formation of linear and fractal aggregates of high-conductivity magnetic nanoparticles in a static magnetic field. A transition between dendritic and fractal structures in response to a change in magnetic field is investigated by scanning electron microscopy and atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinker, C.J. and Scherer, G.W., Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, San Diego: Academic, 1990.

    Google Scholar 

  2. Witten, T.A., Jr. and Sander, L.M., Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett., 1981, vol. 47, no. 19, p. 1400.

    Article  CAS  Google Scholar 

  3. Maksimov, A.I., Moshnikov, V.A., Tairov, Yu.M., and Shilova, O.A., Osnovy zol’-gel’ tekhnologii nanokompozitov (Introduction to the Sol-Gel Technology of Nanocomposites), St. Petersburg: Elmor, 2008, 2nd ed.

    Google Scholar 

  4. Jullien, R., Fractal aggregates, Usp. Fiz. Nauk, 1989, vol. 157, no. 2, p. 339.

    Article  Google Scholar 

  5. Roldugin, V.I., Properties of fractal disperse systems, Usp. Khim., 2003, vol. 72, no. 4, p. 1027.

    Google Scholar 

  6. Roldugin, V.I., Interfacial self-organization of nanoparticles, Usp. Khim., 2004, vol. 73, no. 2, p. 123.

    Google Scholar 

  7. Gracheva, I.E. and Moshnikov, V.A., Nanomaterialy s ierarkhicheskoi strukturoi por (Nanomaterials with a Hierarchical Pore Structure), St. Petersburg: SPbGETU, 2011.

    Google Scholar 

  8. Lord, E.A., Mackay, A.L., and Ranganathan, S., New Geometries for New Materials, Cambridge: Cambridge Univ. Press, 2006.

    Google Scholar 

  9. Minaev, V.S., Nanogeteromorfnaya struktura i relaksatsiya nekristallicheskogo veshchestva (Nanoheteromorphic Structure and Relaxation of Noncrystalline Substances), Moscow: Mosk. Inst. Elektronnoi Tekhniki, 2010.

    Google Scholar 

  10. Kirillova, S.A., Al’myashev, V.I., and Gusarov, V.V., Spinodal decomposition in the SiO2-TiO2 system and formation of hierarchical structures, Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 2, p. 100.

    Google Scholar 

  11. Ivanov, V.V. and Talanov, V.M., Modular structure of nanostructures: Information codes and combinatorial design, Nanosist.: Fiz., Khim., Mat., 2010, vol. 1, no. 1, p. 72.

    Google Scholar 

  12. Yurkov, G.Yu., Popkov, O.V., Koksharov, Yu.A., et al., Fe-containing nanoparticles on the surface of silica microgranules, Inorg. Mater., 2006, vol. 42, no. 8, p. 877.

    Article  CAS  Google Scholar 

  13. Yurkov, G.Yu., Astaf’ev, D.A., Nikitin, L.N., et al., FeContaining nanoparticles in siloxane rubber matrices, Inorg. Mater., 2006, vol. 42, no. 5, p. 496.

    Article  CAS  Google Scholar 

  14. Dubov, P.L., Korol’kov, D.V., and Petranovskii, V.P., Klastery i matrichno-izolirovannye klasternye sverkhstruktury (Clusters and Matrix-Isolated Cluster Superstructures), St. Petersburg: S.-Peterburg. Gos. Univ., 1995.

    Google Scholar 

  15. Cademartiri, L. and Ozin, G.A., Concepts of Nanochemistry, New York: Wiley-VCH, 2009.

    Google Scholar 

  16. Wang, M.C.P. and Gates, B.D., Directed assembly of nanowires, Mater. Today, 2009, vol. 12, no. 5, p. 34.

    Article  Google Scholar 

  17. Chih-Hao Chang, Chee-Wee Tan, Jianmin Miao, and Barbastathism G., Self-assembled ferrofluid lithography: Patterning micro and nanostructures by controlling magnetic nanoparticles, Nanotechnology, 2009, vol. 20, p. 495 301.

    Article  Google Scholar 

  18. Gracheva, I.E., Moshnikov, V.A., Maraeva, E.V., et. al, Nanostructured materials obtained under conditions of hierarchical self-assembly and modified by derivative forms of fullerenes, J. Non-Cryst. Solids, 2012, vol. 358, no. 2, p. 433.

    Article  CAS  Google Scholar 

  19. Moshnikov, V.A., Gracheva, I.E., Lenshin, A.S., et. al, Porous silicon with embedded metal oxides for gas sensing applications, J. Non-Cryst. Solids, 2012, vol. 358, no. 3, p. 590.

    Article  CAS  Google Scholar 

  20. Gracheva, I.E., Karpova, S.S., Moshnikov, V.A., and Pshchelko, N.S., Cellular hierarchical porous structures with electroadhesion contacts, Izv. Sankt-Peterburg. Gos. Elektrotekh. Univ. LETI, 2010, no. 8, p. 27.

    Google Scholar 

  21. Gracheva, I.E. and Moshnikov, V.A., Variable-frequency electrical disturbance as a novel approach to improving the sensitivity and selectivity of e-nose systems, Izv. Ross. Pedagogich. Univ. im. A.I. Gertsena, 2009, no. 79, p. 100.

    Google Scholar 

  22. Elhadj, S., Chernov, A.A., and De Yoreo, J.J., Solventmediated repair and patterning of surfaces by AFM, Nanotechnology, 2008, vol. 19, p. 105 304.

    Article  Google Scholar 

  23. Gracheva, I.E., Gareev, K.G., Moshnikov, V.A., and Al’myashev, V.I., Hierarchical-structure nanocomposite materials based on the Y-Fe-Si-O system, Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 5, p. 111.

    Google Scholar 

  24. Gareev, K.G., Gracheva, I.E., Kazantseva, N.E., et al., Characterization of products of sol-gel processes in multicomponent oxide systems leading to the formation of magnetic nanocomposites, Nano-Mikrosist. Tekh., 2012, no. 10, p. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Kononova.

Additional information

Original Russian Text © I.E. Kononova, K.G. Gareev, V.A. Moshnikov, V.I. Al’myashev, O.V. Kucherova, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 1, pp. 75–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kononova, I.E., Gareev, K.G., Moshnikov, V.A. et al. Self-assembly of fractal magnetite-silica aggregates in a static magnetic field. Inorg Mater 50, 68–74 (2014). https://doi.org/10.1134/S0020168514010117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514010117

Keywords

Navigation