Skip to main content
Log in

Application of BiFeO3 and Bi4Ti3O12 in ferroelectric memory, phase shifters of a phased array, and microwave HEMTs

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper examines the main applications of bismuth ferrite and bismuth titanate and demonstrates their potential applications in spintronics and radioelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RF Government Resolution no. 763, September 8, 2011: On changes in the Development of Electronic Components and Radioelectronics Federal Targeted Program, 2008–2015.

  2. Vorotilov, K.A., Mukhortov, V.M., and Sigov, A.S., Integrirovannye segnetoelektricheskie ustroistva (Integrated Experimental Devices), Moscow: Energoatomizdat, 2011.

    Google Scholar 

  3. Vorotilov, K.A. and Sigov, A.S., Ferroelectric memory, Phys. Solid State, 2012, vol. 54, no. 5, pp. 894–899.

    Article  CAS  Google Scholar 

  4. International Technology Roadmap for Semiconductors, 2011.

  5. Scott, J.F., Prospects for Ferroelectrics, Cambridge: Cambridge Univ., 2012–2022.

    Google Scholar 

  6. Lin, X., Lin, Y., Chen, W., et al., Ferroelectric memory based on nanostructures, Nano Res. Lett., 2012, vol. 7, p. 285.

    Article  Google Scholar 

  7. Scott, J.F., Application of magnetoelectrics, J. Mater. Chem., 2012, vol. 22, pp. 4567–4574.

    Article  CAS  Google Scholar 

  8. Catalan, G., Seidel, J., Ramesh, R., and Scott, J.F., Domain wall nanoelectronics, Rev. Mod. Phys., 2012, vol. 84, no. 1, pp. 119–156.

    Article  CAS  Google Scholar 

  9. Scott, F., Ferroelectric Memories, Heidelberg: Springer, 2000.

    Book  Google Scholar 

  10. Setter, N., Damjanovic, D., Eng, L., et al., Ferroelectric thin films: Review of materials, properties, and applications, J. Appl. Phys., 2006, vol. 100, paper 051 606.

    Google Scholar 

  11. FRAM Guide Book, Fujitsu Electronic Devices, 2005.

  12. Vendik, O.G., Ferroelectrics find their “niche” among microwave control devices, Phys. Solid State, 2009, vol. 51, no. 7, pp. 1529–1534.

    Article  CAS  Google Scholar 

  13. Takashima, D., Nagadomi, Y., Hatsuda, K., et al., A 128 Mb chain FeRAM and system design for HDD application and enhanced HDD performance, IEEE J. Solid-State Circuits, 2011, vol. 46, no. 1, pp. 530–536.

    Article  Google Scholar 

  14. Maruyama, K., Kondo, M., Singh, S.K., and Ishiwara, H., New ferroelectric material for embedded FRAM LSIs, Fujitsu Sci. Tech. J., 2007, vol. 43, pp. 502–507.

    CAS  Google Scholar 

  15. Mamonov, E.I. and Zheludev, E.S., Special properties of ferroelectrics and ferromagnetic toroids with a rectangular hysteresis loop, Izv. Akad. Nauk SSSR, Ser. Fiz., 1960, vol. 24, no. 11, pp. 1421–1431.

    Google Scholar 

  16. Chervinskii, M.M., Segnetoelektriki i perspektivy ikh primeneniya v vychislitel’noi tekhnike (Ferroelectrics and Their Potential Applications in Computer Engineering), Moscow: Gosenergoizdat, 1962.

    Google Scholar 

  17. Tambovtsev, D.A., Skorikov, V.M., and Zheludev, I.S., Preparation and some properties of bismuth titanate single crystals, Kristallografiya, 1963, vol. 8, no. 6, pp. 889–893.

    CAS  Google Scholar 

  18. Zhang, N., Zhang, C., and Li, X., Preparation and properties of the ferroelectric materials based on BiT, Adv. Mater. Res., 2013, vol. 624, pp. 146–149.

    Article  CAS  Google Scholar 

  19. Kim, S.J., Moryoshi, C., Kimura, S., et al., Direct observation of oxygen stabilization in layered ferroelectric Bi3.25La0.75Ti3O12, Appl. Phys. Lett., 2007, vol. 91, paper 062 913.

  20. Roy, A., Prasad, R., Auluck, S., and Garg, A., Engineering polarization rotation in ferroelectric bismuth titanate, arXiv:1301.5743, 2013.

    Google Scholar 

  21. Zhao, Y., Jung, K., Momose, T., et al., Supercritical fluid deposition of bismuth titanate for embadded FeRAM applications, Meet. Abstr. MA-2012, 2012.

    Google Scholar 

  22. Tomashpol’skii, Yu.Ya., Skorikov, V.M., Venevtsev, Yu.N., and Speranskaya, E.I., Growth and structural characterization of BiFeO3 magnetoelectric single crystals, Izv. Akad. Nauk SSSR, Neorg. Mater., 1966, vol. 2, no. 4, pp. 707–711.

    Google Scholar 

  23. Wang, J., Neaton, J.B., Zheng, H., et al., Epitaxial BiFeO3 multiferroic thin films heterostructures, Science, 2003, vol. 299, pp. 1719–1722.

    Article  CAS  Google Scholar 

  24. Pyatakov, A.P. and Zvezdin, A.K., Magnetoelectric materials and multiferroics, Usp. Fiz. Nauk, 2012, vol. 82, no. 6, pp. 593–620.

    Article  Google Scholar 

  25. Kalinkin, A.N. and Skorikov, V.M., BiFeO3 films and single crystals as a promising inorganic material for spintronics, Russ. J. Inorg. Chem., 2010, vol. 55, no. 11, pp. 1794–1809.

    Article  CAS  Google Scholar 

  26. Denisov, V.M, Belousova, N.V., Zhereb, V.P., et al., Oxide compounds in the bismuth(III) oxideiron(III) oxide system: I. Preparation and phase equilibria, Zh. Sib. Fed. Univ., Ser. Khim., 2012, vol. 2, no. 5, pp. 146–167.

    Google Scholar 

  27. Egorysheva, A.V., Volodin, V.D., Ellert, O.G., et al., Mechanochemical activation of starting oxide mixtures for solid-state synthesis of BiFeO3, Inorg. Mater., 2013, vol. 49, no. 3, pp. 303–309.

    Article  CAS  Google Scholar 

  28. Egorysheva, A.V., Kuvshinova, T.B., Volodin, V.D., et al., Synthesis of high-purity nanocrystalline BiFeO3, Inorg. Mater., 2013, vol. 49, no. 3, pp. 310–314.

    Article  CAS  Google Scholar 

  29. Cross, J.S., Kim, S.-H., Wada, S., et al., Characterization of Bi and Fe, co-doped PZT capacitors for FeRAM, Sci. Technol. Adv. Mater., 2010, vol. 11, paper 044 402.

    Article  Google Scholar 

  30. Baek, S.-H. and Eom, C.-B., Epitaxial integration of perovskite-based multifunctional oxides on silicon, Acta Mater. dx.doi.org./10.1016/j.actamat.2012.09.073

  31. Meyer, R. and Waser, R., Hysteretic resistance concepts in ferroelectric thin films, J. Appl. Phys., 2006, vol. 100, paper 051 611.

  32. Wouters, D.J., FeRAM technology developments today and prospects of future scaling, CREMSI Workshop, Fuveau, 2004.

    Google Scholar 

  33. Jiang, A.Q., Wang, C., Jin, K.J., et al., A resistive memory in semiconducting BiFeO3 thin-film capacitors, Adv. Mater., 2011, vol. 23, pp. 1277–1281.

    Article  CAS  Google Scholar 

  34. Jiang, A. and Liu, X.B., US Patent Application 20 120 281 451, 2011.

  35. Sawa, A., Resistive switching in transition metal oxides, Mater. Today, 2008, vol. 11, no. 6, pp. 28–36.

    Article  CAS  Google Scholar 

  36. Jeong, D.S., Thomas, R., Katiyar, R.S., et al., Emerging memories: Resistive switching mechanisms and current status, Rep. Prog. Phys., 2012, vol. 75, no. 7, paper 076 502.

    Google Scholar 

  37. Zhu, X.-J., Shang, J., and Li, R.-W., Resistive switching effects in oxide sandwiched structures, Front. Mater. Sci., 2012, vol. 6, pp. 183–206.

    Article  Google Scholar 

  38. Yarmarkin, V.K., Shul’man, S.G., and Lemanov, V.V., On the effect of spontaneous polarization on the height of the Schottky barrier at the metal-ferroelectric contact, Phys. Solid State, 2013, vol. 55, no. 3, pp. 547–550.

    Article  CAS  Google Scholar 

  39. Blom, P.W.M., Wolf, R.M., Cillessen, J.F.M., et al., Ferroelectric Schottky diode, Phys. Rev. Lett., 1994, vol. 73, pp. 2107–2110.

    Article  CAS  Google Scholar 

  40. Choi, T., Lee, S., Choi, Y.J., et al., Switchable ferroelectric diode and photovoltaic effect in BiFeO3, Science, 2009, vol. 324, pp. 63–66.

    Article  CAS  Google Scholar 

  41. Yang, C.-H., Seidel, J., Kim, S.J., et al., Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films, Nat. Mater., 2009, vol. 8, pp. 485–493.

    Article  CAS  Google Scholar 

  42. Komandin, G.A., Torgashev, V.I., Volkov, A.A., et al., Effect of BiFeO3 ceramics morphology on electrodynamic properties in the terahertz frequency range, Phys. Solid State, 2012, vol. 54, no. 6, pp. 1191–1198.

    Article  CAS  Google Scholar 

  43. Wu, J. and Wang, J., Diodelike and resistive hysteresis behavior of heterolayered BiFeO3/ZnO ferroelectric thin films, J. Appl. Phys., 2010, vol. 108, paper 094 107.

  44. Wang, C., Jin, K.-J., Xu, Z.-T., et al., Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films, Appl. Phys. Lett., 2011, vol. 98, paper 192 901.

  45. Ahadi, K., Mahdavi, S.M., Nemati, A., et al., Photoconductivity and diode effect in Bi rich multiferroic BiFeO3 thin films grown by pulsed-laser deposition, J. Mater. Sci.: Mater. Electron., 2011, vol. 22, pp. 815–820.

    Article  CAS  Google Scholar 

  46. Lee, D., Baek, S.H., Kim, T.H., et al., Polarity control of ferroelectric/metal interfaces for switchable diode, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 84, paper 125 305.

    Google Scholar 

  47. Yao, Y.P., Liu, Y.K., Dong, S.N., et al., Multi-state resistive switching memory with secure information storage in Au/BiFe0.95Mn0.05O3/La5/8Ca3/8MnO3 heterostructure, Appl. Phys. Lett., 2012, vol. 100, paper 193 504.

    Google Scholar 

  48. Chen, X., Zhang, H., Ruan, K., et al., Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates, J. Alloys Compd., 2012, vol. 529, pp. 108–112.

    Article  CAS  Google Scholar 

  49. Tsurumaki-Fukuchi, A., Yamada, H., and Sawa, A., Resistive switching memory based on ferroelectric polarization reversal at Schottky-like BiFeO3 interfaces, MRS Proc., 2012, vol. 1430.

  50. Noheda, B. and Farokhipoor, S., Resistive switching in ferroelectric BiFeO3 by 1.7 eV change of the Schottky barrier height, arXiv:1104.3267v1, 2011.

    Google Scholar 

  51. Ge, C., Jin, K.-J., Wang, C., et al., Effect of ferroelectric parameters on ferroelectric diodes, J. Appl. Phys., 2012, vol. 111, paper 054 104.

  52. Esaki, L., Laibowitz, R.B., and Stiles, P.J., Polar switch, IBM Tech. Discl. Bull., 1971, vol. 13, p. 2161.

    Google Scholar 

  53. Garcia, V., Fusil, S., Bouzehouane, K., et al., Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature, 2009, vol. 460, no. 7251, pp. 81–84.

    Article  CAS  Google Scholar 

  54. Pantel, D., Lu, H., Goetze, S., et al., Tunnel electroresistance in junction with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers, Appl. Phys. Lett., 2012, vol. 100, paper 232 902.

    Article  Google Scholar 

  55. Bruno, F.Y., Boyn, S., Garcia, V., et al., Ferroelectric tunnel junctions based on pseudotetragonal BiFeO3, Bull. APS, 2013, vol. 58, no. 1.

    Google Scholar 

  56. Jiang, A.Q., Chen, M.C., Yu, H.H., et al., Local on/off currents in BiFeO3 thin films by bipolar polarization orientations, Integr. Ferroelectr., 2012, vol. 134, no. 1, pp. 65–72.

    Article  CAS  Google Scholar 

  57. Lu, H., Liu, X., Burton, J.D., et al., Enhancement of ferroelectric polarization stability by interface engineering, Adv. Mater., 2012, vol. 24, pp. 1209–1216.

    Article  CAS  Google Scholar 

  58. Salvatore, G.A., Ferroelectric field effect transistor for memory and switch applications, Dissertation, Lausanne, 2011, p. 173.

    Google Scholar 

  59. Wang, J., Zheng, H., Ma, Z., et al., Epitaxial BiFeO3 thin films on Si, Appl. Phys. Lett., 2004, vol. 85, no. 13, pp. 2574–2576.

    Article  CAS  Google Scholar 

  60. Wang, Y. and Nan, C.-W., Integration of BiFeO3 thin films on Si wafer via simple sol-gel method, Thin Solid Films, 2009, vol. 517, pp. 4484–4487.

    Article  CAS  Google Scholar 

  61. Shelke, V., Mazumdar, D., Jesse, S., et al., Ferroelectric domain scaling and switching in ultrathin BiFeO3 films deposited on vicinal substrates, New J. Phys., 2012, vol. 14, paper 053 040.

  62. Chen, X., Zhang, H., Ruan, K., et al., Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates, J. Alloys Compd., 2012, vol. 529, pp. 108–112.

    Article  CAS  Google Scholar 

  63. Skorikov, V.M., Kalinkin, A.N., and Polyakov, A.E., Magnetic and electrical properties of multiferroic BiFeO3, its synthesis and applications, Inorg. Mater, 2012, vol. 48, no. 13, pp. 1210–1225.

    Article  CAS  Google Scholar 

  64. Yang, H., Luo, H.M., Wang, H., et al., Rectifying current-voltage characteristics of BiFeO3/Nb-doped SrTiO3 heterojunction, Appl. Phys. Lett., 2008, vol. 92, paper 102 113.

  65. Yin, K., Li, M., Liu, Y., et al., Resistance switching in polycrystalline BiFeO3 thin films, Appl. Phys. Lett., 2010, vol. 97, paper 042 101.

  66. Zhu, X.-J., Shang, J., and Li, R.-W., Resistive switching effects in oxide sandwiched structures, Front. Mater. Sci., 2012, vol. 6, pp. 183–206.

    Article  Google Scholar 

  67. Naumov, I.I., Bellaiche, L., and Fu, H., Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature, 2004, vol. 432, pp. 737–740.

    Article  CAS  Google Scholar 

  68. Bogdanov, A.N. and Yablonskii, D.A., Thermodynamically stable “vortices” in magnetically ordered crystals: A mixed state of magnetic materials, Zh. Eksp. Teor. Fiz., 1989, vol. 95, no. 1, pp. 178–182.

    Google Scholar 

  69. Kalinkin, A.N. and Skorikov, V.M., Skyrmion Lattices in the BiFeO3 Multiferroic, Inorg. Mater., 2011, vol. 47, no. 1, pp. 63–67.

    Article  CAS  Google Scholar 

  70. Nelson, C.T., Winchester, B., Zhang, Yi, et al., Spontaneous vortex nanodomain array at ferroelectric heterointerfaces, Nano Lett., 2011, vol. 11, pp. 828–834.

    Article  CAS  Google Scholar 

  71. Vasudevan, R.K., Chen, Y.-C., Tai, H.-H., et al., Exploring topological defects in epitaxial BiFeO3 thin films, ACS Nano, 2011, vol. 5, no. 2, pp. 879–887.

    Article  CAS  Google Scholar 

  72. Balke, N., Winchester, B., Ren, W., et al., Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3, Nat. Phys., 2011, vol. 8, no. 1, pp. 81–88.

    Article  Google Scholar 

  73. Dawker, M., Gruverman, A., and Scott, J.F., Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnetics, J. Phys. Condens. Matter, 2006, vol. 18, pp. L71–L79.

    Article  Google Scholar 

  74. Kalinkin, A.N., Polyakov, A.E., and Skorikov, V.M., Dipole Skyrmion Vortices in Multiferroic BiFeO3, Inorg. Mater., 2013, vol. 49, no. 3, pp. 315–318.

    Article  CAS  Google Scholar 

  75. Hajra, P., Pal, M., Datta, A., et al., Magnitodielectric properties of nanodisc bismuth ferrite grown within Na-4 mica nanochannels, J. Appl. Phys., 2010, vol. 108, paper 114 306.

  76. Naumov, I.I. and Bratkovsky, A.M., Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles, Phys. Rev. Lett., 2008, vol. 101, paper 107 601.

  77. Mukhortov, V.M. and Yuzyuk, Yu.I., Geterostruktury na osnove nanorazmernykh segnetoelektricheskikh plenok: poluchenie, svoistva i primenenie (Heterostructures Based on Ferroelectric Nanofilms), Rostov-on-Don: Yuzhnyi Nauchnyi Tsentr Ross. Akad. Nauk, 2008.

    Google Scholar 

  78. Kopp, C., Phazotron Zhuk AE/ASE accessing Russias’s first fighter AESE, Technical Report APA-TR-2008-0403, SMIEEE, 2012.

    Google Scholar 

  79. Khabibulin, R.A., Vasilevskii, I.S., Galliev, G.B., et al., Effect of the built-ion electric field on optical and electrical properties of AlGaAs/InGaAs/GaAs P-HEMT nanoheterostructures, Semiconductors, 2011, vol. 45, no. 5, pp. 657–662.

    Article  Google Scholar 

  80. Fedorov, Yu., Wide Band Gap (Al,Ga,In)N heterostructures and related devices for the millimeter range, Elektronika, 2011, no. 2, pp. 92–107.

    Google Scholar 

  81. Wallace, H.B., ViSAR Project, 2012.

    Google Scholar 

  82. Ohtomo, A. and Hwang, H.Y., A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature, 2004, vol. 427, pp. 423–426.

    Article  CAS  Google Scholar 

  83. Niranjan, M.K., Wang, Y., Jaswal, S.S., et al., Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces, Phys. Rev. Lett., 2009, vol. 103, paper 016 804.

  84. Wang, Y., Niranjan, M.K., Jaswal, S.S., et al., First-principles studies of a two-dimensional electron gas at the interface in ferroelectric oxide heterostructures, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, paper 165 130.

  85. Wang, Y., Functional two-dimensional electronic gases at interfaces of oxide heterostructures, Dissertation, Univ. Nebraska, 2011, p. 146.

    Google Scholar 

  86. Zhang, Z., Wu, P., Chen, L., et al., First-principles prediction of a two dimensional electron gas at the BiFeO3/SrTiO3 interface, Appl. Phys. Lett., 2011, vol. 99, paper 062 902.

  87. Komandin, G.A., Torgashev, V.I., Volkov, A.A., et al., Optical properties of BiFeO3 ceramics in the frequency range 0.3–30 THz, Phys. Solid State, 2010, vol. 524, no. 4, pp. 734–743.

    Article  Google Scholar 

  88. Kamba, S., Nuzhnyy, D., Savinov, M., et al., Infrared and THz studies of polar and improper magnetodielectric effect in multiferroic BiFeO3 ceramics, ArXiv:0611007v2, 2006.

    Google Scholar 

  89. Seidel, J., Martin, L.W., He, Q., et al., Conduction at domain walls in oxide multiferroics, Nat. Mater., 2009, vol. 8, pp. 229–234.

    Article  CAS  Google Scholar 

  90. Fetisov, Yu.K. and Srinivasan, G., Ferrite/ferroelectric microwave phase shifter: Studies on electric field tenability, Electron. Lett., 2005, vol. 41, no. 19, pp. 1066–1067.

    Article  CAS  Google Scholar 

  91. Bush, A.A., Kamentsev, K.E., Meshcheryakov, V.F., et al., Low-frequency magnetoelectric effect in a Galfenol-PZT planar composite structure, Tech. Phys., 2009, vol. 79, no. 9, pp. 1314–1320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kalinkin.

Additional information

Original Russian Text © A.N. Kalinkin, E.M. Kozhbakhteev, A.E. Polyakov, V.M. Skorikov, 2013, published in Neorganicheskie Materialy, 2013, Vol. 49, No. 10, pp. 1113–1125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinkin, A.N., Kozhbakhteev, E.M., Polyakov, A.E. et al. Application of BiFeO3 and Bi4Ti3O12 in ferroelectric memory, phase shifters of a phased array, and microwave HEMTs. Inorg Mater 49, 1031–1043 (2013). https://doi.org/10.1134/S0020168513100038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168513100038

Keywords

Navigation