Skip to main content

Emerging Multiferroic Memories

  • Chapter
  • First Online:
Emerging Non-Volatile Memories

Abstract

Thus far in this book, we have focused on ferroelectric and magnetic spin torque transfer memories. In this chapter, we describe the recent discoveries in the emerging field of multiferroic-based memories. In the last decade, considerable attention has been focused on the search for and characterization of new multiferroic materials as scientists and researchers have been driven by the promise of exotic materials functionality (especially electric field control of ferromagnetism). In this chapter we develop a holistic picture of multiferroic materials, including details on the nature of order parameters and coupling in these materials, the scarcity of such materials, routes to create and control the properties in these materials, and prospects for these materials in next generation devices—with special attention given to memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Ramesh, N.A. Spaldin, Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)

    Google Scholar 

  2. S.-W. Cheong, M. Mostovoy, Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)

    Google Scholar 

  3. L.W. Martin, Y.-H. Chu, R. Ramesh, Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R 68, 89–133 (2010)

    Google Scholar 

  4. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Google Scholar 

  5. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005)

    Google Scholar 

  6. W. Prellier, M.P. Singh, P. Murugavel, The single-phase multiferroic oxides: From bulk to thin film. J. Phys. Condens. Matter. 17, R803–R832 (2005)

    Google Scholar 

  7. L.W. Martin, S.P. Crane, Y.-H. Chu, M.B. Holcomb, M. Gajek, H. Huijben, C.-H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: Thin films and nanostructures. J. Phys. Condens. Matter. 20, 434220 (2008)

    Google Scholar 

  8. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Google Scholar 

  9. D.I. Khomskii, Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)

    Google Scholar 

  10. J.B. Goodenough, J.M. Longo, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, vol. III.4 (Springer, Berlin, 1970), p. 126

    Google Scholar 

  11. T. Mitsui, E. Nakamura, Y. Shiozaki, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, vol. 16(1) (Springer, Berlin, 1981), p. 126

    Google Scholar 

  12. N.A. Hill, Why are there so few magnetic ferroelectrics. J. Phys. Chem. B 104, 6694–6709 (2000)

    Google Scholar 

  13. N.A. Hill, N. Filippetti, Why are there any magnetic ferroelectrics? J. Magn. Magn. Mater. 242, 976–979 (2002)

    Google Scholar 

  14. U. Opik, M.H.L. Pryce, Studies of the Jahn-Teller effect. I. A survey of the static problem. Proc. Royal Soc. Lond. A 238, 425–447 (1957)

    Google Scholar 

  15. P.S. Halasyamani, K.R. Poeppelmeier, Noncentrosymmetric oxides. Chem. Mater. 10, 2753–2769 (1998)

    Google Scholar 

  16. D. Khomskii, Classifying multiferroics: Mechanisms and effects. Physics 2, 20 (2009)

    Google Scholar 

  17. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Google Scholar 

  18. A.M. dos Santos, A. Parashar, A.R. Raju, Y.S. Zhao, A.K. Cheetham, C.N.R. Rao, Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 122, 49–52 (2002)

    Google Scholar 

  19. T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguichi, Y. Syono, Structure determination of ferromagnetic perovskite BiMnO3. J. Solid State Chem. 145, 639–642 (1999)

    Google Scholar 

  20. R.V. Shpanchenko, V.V. Chernaya, A.A. Tsirlin, P.S. Chizhov, D.E. Sklovsky, E.V. Antipov, Synthesis, structure, and properties of new perovskite PbVO3. Chem. Mater. 16, 3267–3273 (2004)

    Google Scholar 

  21. A.A. Belik, M. Azuma, T. Saito, Y. Shimakawa, M. Takano, Crystallographic features and tetragonal phase stability of PbVO3, a new member of the PbTiO3 family. Chem. Mater. 17, 269–273 (2005)

    Google Scholar 

  22. L.W. Martin, Q. Zhan, Y. Suzuki, R. Ramesh, M. Chi, N. Browning, T. Mizoguchi, J. Kreisel, Growth and structure of PbVO3 thin films. Appl. Phys. Lett. 90, 062903 (2007)

    Google Scholar 

  23. A. Kumar, L.W. Martin, S. Denev, J.B. Kortright, Y. Suzuki, R. Ramesh, V. Gopalan, Polar and magnetic properties of PbVO3 thin films. Phys. Rev. B 75, 060101(R) (2007)

    Google Scholar 

  24. R. Seshadri, N.A. Hill, Visualizing the role of Bi 6s “lone pairs” in the off-centering distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892–2899 (2001)

    Google Scholar 

  25. A.P. Levanyuk, D.G. Sannikov, Improper ferroelectrics. Sov. Phys. Usp. 17, 199–214 (1974)

    Google Scholar 

  26. J. Kreisel, N. Kenselmann, Multiferroics—The challenge of coupling magnetism and ferroelectricity. Europhys. News 40, 17–20 (2009)

    Google Scholar 

  27. B.B. van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004)

    Google Scholar 

  28. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005)

    Google Scholar 

  29. E.J. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939)

    Google Scholar 

  30. E.J. Verwey, P.W. Haayman, Electronic conductivity and transition point of magnetite (“Fe3O4”). Physica 8, 979–987 (1941)

    Google Scholar 

  31. D.V. Efremov, J. van den Brink, D.I. Khomskii, Bond- versus site-centered ordering possible ferroelectricity in manganites. Nat. Mater. 3, 853–856 (2004)

    Google Scholar 

  32. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Google Scholar 

  33. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

    Google Scholar 

  34. M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95, 087206 (2005)

    Google Scholar 

  35. I.E. Dzyaloshinskii, Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957)

    Google Scholar 

  36. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Google Scholar 

  37. G. Lawes, A.B. Harris, T. Kimura, N. Rogado, R.J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, A.P. Ramirez, Magnetically driven ferroelectric order in Ni3V2O8. Phys. Rev. Lett. 95, 087205 (2005)

    Google Scholar 

  38. P. Curie, Sur la symétrie dans les phénomènes physiques. Symétrie d’un champ électrique d’un champ magnétique. J. Phys. 3, 393–416 (1894)

    Google Scholar 

  39. D.N. Astrov, The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP 11, 708–709 (1960)

    Google Scholar 

  40. D.N. Astrov, Magnetoelectric effect in chromium oxide. Sov. Phys. JETP 13, 729–733 (1961)

    Google Scholar 

  41. G.T. Rado, V.J. Folen, Observation of the magnetically induced magnetoelectric effect and evidence for antinferromagnetic domains. Phys. Rev. Lett. 7, 310–311 (1961)

    Google Scholar 

  42. V.J. Folen, G.T. Rado, E.W. Stalder, Anisotropy of the magnetoelectric effect in Cr2O3. Phys. Rev. Lett. 6, 607–608 (1961)

    Google Scholar 

  43. V.W. Wood, A.E. Austin, Possible applications for magnetoelectric materials. Int. J. Magn. 5, 303–315 (1974)

    Google Scholar 

  44. L.D. Landau, E.M. Lifshiftz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960)

    Google Scholar 

  45. T.H. O’Dell, Electrodynamics of Magneto-Electric Media (North-Holland, Amsterdam, 1970)

    Google Scholar 

  46. R.R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1966)

    Google Scholar 

  47. J.P. Rivera, On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 165–180 (1994)

    Google Scholar 

  48. G.A. Smolensky, V.A. Ioffe, Commun. No. 71, Colloque International du Magnetisme, Grenoble (1958)

    Google Scholar 

  49. G.A. Smolensky, A.I. Agranovskaya, V.A. Isupov, New ferroelectrics of complex compound. Sov. Phys. Solid State 1, 149–150 (1959)

    Google Scholar 

  50. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Google Scholar 

  51. M. Eibschütz, H.J. Guggenheim, Antiferromagnetic-piezoelectric crystals: BaMe4 (M=Mn, Fe, Co, and Ni). Solid State Commun. 6, 737–739 (1968)

    Google Scholar 

  52. J.F. Scott, Spectroscopy of incommensurate ferroelectrics. Ferroelectrics 24, 127–134 (1980)

    Google Scholar 

  53. Y.N. Venevtsev, V.V. Gagulin, I.D. Zhitomirsky, Materials science aspects of seignette-magnetism problem. Ferroelectrics 73, 221–248 (1987)

    Google Scholar 

  54. Y.Y. Tomashpol’ski, Y.N. Venevtsev, V.N. Beznozdrev, Fiz. Tverd. Tela. 7, 2763 (1965)

    Google Scholar 

  55. E. Ascher, H. Schmid, D. Tar, Dielectric properties of boracites and evidence for ferroelectricity. Solid State Commun. 2, 45–49 (1964)

    Google Scholar 

  56. H. Schmid, H. Rieder, E. Ascher, Magnetic susceptibilities of some 3d transition metal boracites. Solid State Commun. 3, 327330 (1965)

    Google Scholar 

  57. A.V. Kovalev, G.T. Andreeva, C. R. Acad. Sci. 256, 1958 (1963)

    Google Scholar 

  58. P. Coeuré, F. Guinet, J.C. Peuzin, G. Buisson, E.F. Bertaut, in Proceedings of International Meeting on Ferroelectricity, ed. by V. Dvorák, A. Fousková, P. Glogar, vol. 1 (Institute of Physics, Czechoslovak Academy of Sciences, Prague 1966), p. 332–340

    Google Scholar 

  59. E.F. Bertaut, M. Mercier, Structure magnetique de MnYO3. Phys. Lett. 5, 27–29 (1963)

    Google Scholar 

  60. H. Sugie, N. Iwata, K. Kohn, Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R=Ho, Er, Yb or Lu). J. Phys. Soc. Jpn. 71, 1558–1564 (2002)

    Google Scholar 

  61. D.G. Schlom, J.H. Haeni, J. Lettieri, C.D. Theis, W. Tian, J.C. Jiang, X.Q. Pan, Oxide nano-engineering using MBE. Mater. Sci. Eng. B 87, 282–291 (2001)

    Google Scholar 

  62. D.G. Schlom, L.-Q. Chen, C.-B. Eom, K.M. Rabe, S.K. Streiffer, J.-M. Triscone, Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589626 (2007)

    Google Scholar 

  63. H.L. Yakel, W.D. Koehler, E.F. Bertaut, E.F. Forrat, On the crystal structure of the manganese (III) trioxides of the heavy lanthanides and yttrium. Acta Crystallogr. 16, 957–962 (1963)

    Google Scholar 

  64. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    Google Scholar 

  65. T. Kimura, G. Lawes, T. Goto, Y. Tokura, A.P. Ramirez, Magnetoelectric phase diagrams of orthorhombic RMnO3 (R=Gd, Tb, and Dy). Phys. Rev. B 71, 224425 (2005)

    Google Scholar 

  66. D. Ito, N. Fujimura, T. Yoshimura, T. Ito, Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors. J. Appl. Phys. 93, 5563 (2003)

    Google Scholar 

  67. N. Fujimura, T. Ishida, T. Yoshimura, T. Ito, Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices. Appl. Phys. Lett. 69, 1011 (1996)

    Google Scholar 

  68. P. Salvador, T.-D. Doan, B. Mercey, B. Raveau, Stabilization of YMnO3 in a perovskite structure as a thin film. Chem. Mater. 10, 2592–2595 (1998)

    Google Scholar 

  69. D.C. Yoo, J.Y. Lee, I.S. Kim, Y.T. Kim, Microstructure control of YMnO3 thin films on Si (100) substrates. Thin Solid Films 416, 62–65 (2002)

    Google Scholar 

  70. K. Suzuki, D. Fu, K. Nishizawa, T. Miki, K. Kato, Ferroelectric properties of alkoxy-derived YMnO3 films crystallized in argon. Jpn. J. Appl. Phys. 42, 5692–5695 (2003)

    Google Scholar 

  71. J. Dho, C.W. Leung, J.L. MacManus-Driscoll, M.G. Blamire, Epitaxial control and oriented YMnO3 film growth by pulsed laser deposition. J. Cryst. Growth 267, 548–553 (2004)

    Google Scholar 

  72. A. Posadas, J.-B. Yau, C.H. Ahn, J. Han, S. Gariglio, K. Johnston, K.M. Rabe, J.B. Neaton, Epitaxial growth of multiferroic YMnO3 on GaN. Appl. Phys. Lett. 87, 171915 (2005)

    Google Scholar 

  73. Y. Chye, T. Liu, D. Li, K. Lee, D. Lederman, T.H. Myers, Molecular beam epitaxy of YMnO3 on c-plane GaN. Appl. Phys. Lett. 88, 132903 (2006)

    Google Scholar 

  74. K.T. Kim, C.L. Kim, The effects of drying temperature on the crystallization of YMnO3 thin films prepared by sol-gel method using alkoxides. J. Eur. Ceram. Soc. 24, 2613–2617 (2004)

    Google Scholar 

  75. L. Zhou, Y.P. Wang, Z.G. Liu, W.Q. Zou, Y.W. Du, Structure and ferroelectric properties of ferroelectromagnetic YMnO3 thin films prepared by pulsed laser deposition. Phys. Status Solidi A 201, 497–501 (2004)

    Google Scholar 

  76. N. Shigemitsu, H. Sakata, D. Ito, T. Yoshimura, T. Ashida, N. Fujimura, Pulsed-laser-deposited YMnO3 epitaxial films with square polarization-electric field hysteresis loop and low-temperature growth. Jpn. J. Appl. Phys. 43, 6613–6616 (2004)

    Google Scholar 

  77. D. Kim, D. Klingensmith, D. Dalton, V. Olariu, F. Gnadinger, M. Rahman, A. Mahmud, T.S. Kalkur, C-axis oriented MOCVD YMnO3 thin film and its electrical characteristics in MFIS FeTRAM. Integr. Ferroelectr. 68, 75–84 (2004)

    Google Scholar 

  78. N. Fujimura, H. Sakata, D. Ito, T. Yoshimura, T. Yokota, T. Ito, Ferromagnetic and ferroelectric behaviors of A-site substituted YMnO3-based epitaxial thin films. J. Appl. Phys. 93, 6990 (2003)

    Google Scholar 

  79. T. Choi, J. Lee, Bi modification for low-temperature processing of YMnO3 thin films. Appl. Phys. Lett. 84, 5043 (2004)

    Google Scholar 

  80. A. Sundaresan, A. Maignan, B. Raveau, Effect of A-site cation size mismatch on charge ordering and colossal magnetoresistance properties of perovskite manganites. Phys. Rev. B 56, 5092–5095 (1997)

    Google Scholar 

  81. A.A. Nugroho, N. Bellido, U. Adem, G. NĂ©nert, C. Simon, M.O. Tjia, M. Mostovoy, T.T.M. Palstra, Enhancing the magnetoelectric coupling in YMnO3 by Ga doping. Phys. Rev. B 75, 174435 (2007)

    Google Scholar 

  82. A.A. Bosak, A.A. Kamenev, I.E. Graboy, S.V. Antonov, O.Y. Gorbenko, A.R. Kaul, C. Dubourdieu, J.P. Senateur, V.L. Svechnikov, H.W. Zandbergen, B. Holländer, Epitaxial phase stabilization phenomena in rare earth manganites. Thin Solid Films 400, 149–153 (2001)

    Google Scholar 

  83. K. Suzuki, K. Nishizawa, T. Miki, K. Kato, Preparation and orientation control of RMnO3 (R=Y, Yb) thin film by chemical solution deposition. J. Cryst. Growth 237, 482–486 (2002)

    Google Scholar 

  84. J.H. Lee, P. Murugavel, H. Ryu, D. Lee, J.Y. Jo, J.W. Kim, H.J. Kim, K.H. Kim, Y. Jo, M.-H. Jung, Y.H. Oh, Y.-W. Kim, J.-G. Yoon, J.-S. Chung, T.W. Noh, Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3 thin films. Adv. Mater. 18, 3125–3129 (2006)

    Google Scholar 

  85. K.R. Balasubramaniam, S. Havelia, P.A. Salvador, H. Zheng, J.F. Mitchell, Epitaxial stabilization and structural properties of REMnO3 (RE=Dy, Gd, Sm) compounds in a layered, hexagonal ABO3 structure. Appl. Phys. Lett. 91, 232901 (2007)

    Google Scholar 

  86. Y. Cui, C. Wang, B. Cao, TbMnO3 epitaxial thin films by pulsed-laser deposition. Solid State Commun. 133, 641–645 (2005)

    Google Scholar 

  87. D. Rubi, C. de Graaf, C.J.M. Daumont, D. Mannix, R. Broer, B. Noheda, Ferromagnetism and increased iconicity in epitaxially grown TbMnO3 films. Phys. Rev. B 79, 014416 (2009)

    Google Scholar 

  88. B.J. Kirby, D. Kan, A. Luykx, M. Murakami, D. Kundaliya, I. Takeuchi, Anomalous ferromagnetism in TbMnO3 thin films. J. Appl. Phys. 105, 07D917 (2009)

    Google Scholar 

  89. C.J.M. Daumont, D. Mannix, S. Venkatesan, G. Catalan, D. Rubi, B.J. Kooi, J.T.M. De Hosson, B. Noheda, Epitaxial TbMnO3 thin films on SrTiO3 substrates: a structural study. J. Phys. Condens. Matter 21, 182001 (2009)

    Google Scholar 

  90. D.K. Shukla, R. Kumar, S.K. Sharma, P. Thakur, R.J. Choudhary, S. Mollah, N.B. Brookes, M. Knobel, K.H. Chae, W.K. Choi, Thin film growth of multiferroic BiMn2O5 using pulsed laser ablation and its characterization. J. Phys. D 42, 125304 (2009)

    Google Scholar 

  91. M. Azuma, N. Seiji, A. Belik, I. Shintaro, S. Takashi, T. Kazuhide, Y. Ikuya, S. Yuichi, T. Mikio, Magnetic ferroelectrics Bi, Pb-3d transition metal perovskites. Trans. Mater. Res. Soc. Jpn. 31

    Google Scholar 

  92. A.M. dos Santos, A.K. Cheetham, W. Tian, X. Pan, Y. Jia, N.J. Murphy, J. Lettieri, D.G. Schlom, Epitaxial growth and properties of metastable BiMnO3 thin films. Appl. Phys. Lett. 84, 91 (2004)

    Google Scholar 

  93. A. Sharan, J. Lettieri, Y. Jia, W. Tian, X. Pan, D.G. Schlom, V. Gopalan, Bismuth manganite: a multiferroic with large nonlinear optical response. Phys. Rev. B 69, 214109 (2004)

    Google Scholar 

  94. J.Y. Son, B.G. Kim, C.H. Kim, J.H. Cho, Writing polarization bits on multiferroic BiMnO3 thin film using Kelvin probe force microscope. Appl. Phys. Lett. 84, 4971 (2004)

    Google Scholar 

  95. M. Gajek, M. Bibes, A. Barthélémy, K. Bouzehouane, S. Fusil, M. Varela, J. Fontcuberta, A. Fert, Spin filtering through ferromagnetic BiMnO3 tunnel barriers. Phys. Rev. B 72, 020406(R) (2005)

    Google Scholar 

  96. M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, A. Fert, Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007)

    Google Scholar 

  97. C.-H. Yang, S.H. Lee, T.Y. Koo, Y.H. Jeong, Dynamically enhanced magnetodielectric effect and magnetic-field-controlled electric relaxations in La-doped BiMnO3. Phys. Rev. B 75, 140104 (2007)

    Google Scholar 

  98. A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, M. Maie, T. Nagai, Y. Matsui, S.Y. Stefanovich, B.I. Lazoryak, E. Takayama-Muromachi, BiScO3: Centrosymmetric BiMnO3-type oxide. J. Am. Chem. Soc. 128, 706–707 (2006)

    Google Scholar 

  99. P. Baettig, R. Seshadri, N.A. Spaldin, Anti-polarity in ideal BiMnO3. J. Am. Chem. Soc. 129, 9854–9855 (2007)

    Google Scholar 

  100. T. Shishidou, N. Mikamo, Y. Uratani, F. Ishii, T. Oguchi, First-principles study of the electronic structure of bismuth transition-metal oxides. J. Phys. Condens. Matter 16, S5677–S5683 (2004)

    Google Scholar 

  101. R. Schmidt, W. Eerenstein, P.A. Midgley, Large dielectric response to the paramagnetic-ferromagnetic transition (TC ~ 100 K) in multiferroic BiMnO3 epitaxial thin films. Phys. Rev. B 79, 214107 (2009)

    Google Scholar 

  102. P. Royen, K. Swars, Das system wismutoxyd-eisenoxyd im bereich von 0 bis 55mol% eisenoxyd. Angew. Chem. 24, 779 (1957)

    Google Scholar 

  103. F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta. Crystallogr. B46, 698–702 (1990)

    Google Scholar 

  104. S.V. Kiselev, R.P. Ozerov, G.S. Zhdanov, Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 7, 742–744 (1963)

    Google Scholar 

  105. J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073–1074 (1970)

    Google Scholar 

  106. C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, The atomic structure of BiFeO3. Solid State Commun. 7, 701–703 (1969)

    Google Scholar 

  107. J.M. Moreau, C. Michel, R. Gerson, W.J. James, Ferroelectric BiFeO3 x-ray and neutron diffraction study. J. Phys. Chem. Solids 32, 1315–1320 (1971)

    Google Scholar 

  108. C. Tabares-Muños, J.P. Rivera, A. Bezinge, A. Monnier, H. Schmid, Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn. J. Appl. Phys. 24, 1051–1053 (1985)

    Google Scholar 

  109. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, S. Fusil, Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76, 024116 (2007)

    Google Scholar 

  110. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in BiFeO3. Phys. Rev. B 71, 014113 (2005)

    Google Scholar 

  111. F. Zavaliche, S.-Y. Yang, T. Zhao, Y.-H. Chu, M.P. Cruz, C.-B. Eom, R. Ramesh, Multiferroic BiFeO3 films: Domain structure and polarization dynamics. Phase Transit. 79, 991–1017 (2006)

    Google Scholar 

  112. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C 13, 1931–1940 (1980)

    Google Scholar 

  113. I. Sosnowska, T. Peterlin-Neumaier, E. Steichele, Spiral magnetic ordering in bismth ferrite. J. Phys. C 15, 4835–4846 (1982)

    Google Scholar 

  114. G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Leakage mechanisms in BiFeO3. Appl. Phys. Lett. 90, 072902 (2007)

    Google Scholar 

  115. J. Kabelac, S. Ghosh, P. Dobal, R. Katiyar, rf oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001). J. Vac. Sci. Technol. 25, 1049–1052 (2007)

    Google Scholar 

  116. J.F. Ihlefeld, A. Kumar, V. Gopalan, D.G. Schlom, Y.B. Chen, X.Q. Pan, T. Heeg, J. Schubert, X. Ke, P. Schiffer, J. Orenstein, L.W. Martin, Y.-H. Chu, R. Ramesh, Adsorption-controlled molecular-beam epitaxial growth of BiFeO3. Appl. Phys. Lett. 91, 071922 (2007)

    Google Scholar 

  117. V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628 (2002)

    Google Scholar 

  118. Y.H. Lee, C.S. Liang, J.M. Wu, Crystal growth and characterization of highly oriented BiFeO3 thin films. Electrochem. Solid-State Lett. 8, F55–F57 (2005)

    Google Scholar 

  119. R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, F. Zavaliche, S.-Y. Yang, R. Ramesh, Y.B. Chen, X.Q. Pan, X. Ke, M.S. Rzchowski, S.K. Streiffer, Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering. Appl. Phys. Lett. 88, 242904 (2006)

    Google Scholar 

  120. S.-Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D.G. Schlom, Y.J. Lee, Y.-H. Chu, M.P. Cruz, T. Zhao, R. Ramesh, Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett. 87, 102903 (2005)

    Google Scholar 

  121. R. Ueno, S. Okamura, H. Funakubo, K. Saito, Crystal structure and electrical properties of epitaxial BiFeO3 thin films grown by metal organic chemical vapor deposition. Jpn. J. Appl. Phys. 44, L1231–L1233 (2005)

    Google Scholar 

  122. S.K. Singh, Y.K. Kim, H. Funakubo, H. Ishiwara, Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl. Phys. Lett. 88, 162904 (2006)

    Google Scholar 

  123. J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, R. Ramesh, Epitaxial BiFeO3 films on Si. Appl. Phys. Lett. 85, 2574 (2004)

    Google Scholar 

  124. W. Tian, V. Vaithyanathan, D.G. Schlom, Q. Zhan, S.-Y. Yang, Y.-H. Chu, R. Ramesh, Epitaxial integration of (0001) BiFeO3 with (0001) GaN. Appl. Phys. Lett. 90, 172908 (2007)

    Google Scholar 

  125. Y.-H. Chu, T. Zhao, M.P. Cruz, Q. Zhan, P.-L. Yang, L.W. Martin, M. Huijben, C.-H. Yang, F. Zavaliche, H. Zheng, R. Ramesh, Ferroelectric size effects in multiferroic BiFeO3 thin films. Appl. Phys. Lett. 90, 252906 (2007)

    Google Scholar 

  126. S.K. Streiffer, C.B. Parker, A.E. Romanov, M.J. Lefevre, L. Zhao, J.S. Speck, W. Pompe, C.M. Foster, G.R. Bai, Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83(2742) (1998)

    Google Scholar 

  127. J.X. Zhang, Y.L. Li, S. Choudhury, L.Q. Chen, Y.-H. Chu, F. Zavaliche, M.P. Cruz, R. Ramesh, Q.X. Jia, Computer simulation of ferroelectric domain structures in epitaxial BiFeO3 thin films. J. Appl. Phys. 103, 094111 (2008)

    Google Scholar 

  128. Y.-H. Chu, Q. Zhan, L.W. Martin, M.P. Cruz, P.-L. Yang, G.W. Pabst, F. Zavaliche, S.-Y. Yang, J.-X. Zhang, L.-Q. Chen, D.G. Schlom, I.-N. Lin, T.-B. Wu, R. Ramesh, Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 18, 2307–2311 (2006)

    Google Scholar 

  129. Y.-H. Chu, M.P. Cruz, C.-H. Yang, L.W. Martin, P.-L. Yang, J.-X. Zhang, K. Lee, P. Yu, L.-Q. Chen, R. Ramesh, Domain control in multiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662–2666 (2007)

    Google Scholar 

  130. Y.-H. Chu, Q. He, C.-H. Yang, P. Yu, L.W. Martin, P. Shafer, R. Ramesh, Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 9, 1726–1730 (2009)

    Google Scholar 

  131. C.M. Folkman, S.H. Baek, H.W. Jang, C.B. Eom, C.T. Nelson, X.Q. Pan, Y.L. Li, L.-Q. Chen, A. Kumar, V. Gopalan, S.K. Streiffer, Stripe domain structure in epitaxial (001) BiFeO3 thin films on orthorhombic TbScO3 substrate. Appl. Phys. Lett. 94, 251911 (2009)

    Google Scholar 

  132. M.P. Cruz, Y.-H. Chu, J.X. Zhang, P.-L. Yang, F. Zavaliche, Q. He, P. Shafer, L.Q. Chen, R. Ramesh, Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. Phys. Rev. Lett. 99, 217601 (2007)

    Google Scholar 

  133. P. Shafer, F. Zavaliche, Y.-H. Chu, P.-L. Yang, M.P. Cruz, R. Ramesh, Planar electrode piezoelectric force microscopy to study electric polarization switching in BiFeO3. Appl. Phys. Lett. 90, 202909 (2007)

    Google Scholar 

  134. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005)

    Google Scholar 

  135. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Comment on “epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307(1203a) (2005)

    Google Scholar 

  136. H. Béa, M. Bibes, S. Fusil, K. Bouzehouane, E. Jacquet, K. Rode, P. Bencok, A. Barthélémy, Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced x-ray characterizations. Phys. Rev. B 74, 020101 (2006)

    Google Scholar 

  137. J. Wang, A. Scholl, H. Zheng, S.B. Ogale, D. Viehland, D.G. Schlom, N.A. Spaldin, K.M. Rabe, M. Wuttig, L. Mohaddes, J. Neaton, U. Waghmare, T. Zhao, R. Ramesh, Response to comment on “epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307(1203b) (2005)

    Google Scholar 

  138. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889–2892 (2007)

    Google Scholar 

  139. M.B. Holcomb, L.W. Martin, A. Scholl, Q. He, P. Yu, C.-H. Yang, S.-Y. Yang, P.-A. Glans, M. Valvidares, M. Huijben, J.B. Kortright, J. Guo, Y.-H. Chu, R. Ramesh, Probing the evolution of antiferromagnetism in multiferroics. Phys. Rev. B 81, 134406 (2010)

    Google Scholar 

  140. L.W. Martin, Y.-H. Chu, M.B. Holcomb, M. Huijben, S.J. Han, D. Lee, E. Arenholz, S.X. Wang, R. Ramesh, Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050–2055 (2008)

    Google Scholar 

  141. J. Přívratská, V. Janovec, Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains. Ferroelectrics 204, 321–331 (1997)

    Google Scholar 

  142. J. Přívratská, V. Janovec, Spontaneous polarization and/or magnetization in non-ferroelastic domain walls: symmetry predictions. Ferroelectrics 222, 23–32 (1999)

    Google Scholar 

  143. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S. Parkin, Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315, 1553–1556 (2007)

    Google Scholar 

  144. V. Goltsev, R.V. Pisarev, T. Lottermoser, M. Fiebig, Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys. Rev. Lett. 90, 177204 (2003)

    Google Scholar 

  145. M. Mostovoy, Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006)

    Google Scholar 

  146. A. Aird, E.K.H. Salje, Sheet superconductivity in twin walls: experimental evidence of WO3-x. J. Phys. Condens. Matter. 10, L377–L380 (1998)

    Google Scholar 

  147. M. Bartels, V. Hagen, M. Burianek, M. Getzlaff, U. Bismayer, R. Wiesendanger, Impurity-induced resistivity of ferroelastic domain walls in doped lead phosphate. J. Phys. Condens. Matter. 15, 957–962 (2003)

    Google Scholar 

  148. P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007)

    Google Scholar 

  149. M. Daraktchiev, G. Catalan, J.F. Scott, Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375, 122–131 (2008)

    Google Scholar 

  150. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Google Scholar 

  151. Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L.W. Martin, Y.-H. Chu, J.F. Scott, R. Ramesh, Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012)

    Google Scholar 

  152. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–324 (2009)

    Google Scholar 

  153. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)

    Google Scholar 

  154. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science 309, 1688–1692 (2005)

    Google Scholar 

  155. E.K.H. Salje, Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. Chem. Phys. Chem. 11, 940–950 (2010)

    Google Scholar 

  156. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.-H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Electrical control of antiferromagnetic domain in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006)

    Google Scholar 

  157. D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008)

    Google Scholar 

  158. S. Lee, W. Ratcliff, S.-W. Cheong, V. Kiryukhin, Electric field control of the magnetic state of BiFeO3 single crystals. Appl. Phys. Lett. 92, 192906 (2008)

    Google Scholar 

  159. Y.-H. Lee, J.-M. Wu, C.-H. Lai, Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl. Phys. Lett. 88, 042903 (2006)

    Google Scholar 

  160. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)

    Google Scholar 

  161. G.L. Yuan, S.W. Or, Enhanced piezoelectric and pyroelectric effects in single-phase Bi1-xNdxFeO3 (x=0-0.15) ceramics. Appl. Phys. Lett. 88, 062905 (2006)

    Google Scholar 

  162. C.F. Chung, J.P. Lin, J.M. Wu, Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 88, 242909 (2006)

    Google Scholar 

  163. J.K. Kim, S.S. Kim, W.J. Kim, A.S. Bhalla, R. Guo, Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)

    Google Scholar 

  164. Z.V. Gabbasova, M.D. Kuz’min, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, D.N. Rakov, I.B. Krynetsky, Bi1-xRxFeO3 (R=rare earth): a family of novel magnetoelectrics. Phys. Lett. A 158, 491–498 (1991)

    Google Scholar 

  165. A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in Bi1-xLaxFeO3 system studied using 57Fe NMR. Phys. Solid State 45, 141–145 (2006)

    Google Scholar 

  166. D. Lee, M.G. Kim, S. Ryu, H.M. Jang, S.G. Lee, Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Appl. Phys. Lett. 86, 222903 (2005)

    Google Scholar 

  167. Y.-H. Chu, Q. Zhan, M.P. Cruz, L.W. Martin, T. Zhao, P. Yu, R. Ramesh, P.T. Joseph, I.N. Lin, W. Tian, D.G. Schlom, Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008)

    Google Scholar 

  168. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in multiferroic BiFeO3 at room temperature. Appl. Phys. Lett. 88, 212907 (2006)

    Google Scholar 

  169. V.A. Chomchenko, D.A. Kiselev, J.M. Vieira, A.L. Kholkin, M.A. Sa, Y.G. Pogorelov, Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A=Ca, Sr, Pb) ceramics. Appl. Phys. Lett. 90, 242901 (2007)

    Google Scholar 

  170. S. Fujino, M. Murakami, V. Anbusathaiah, S.-H. Lim, V. Nagarajan, C.J. Fennie, M. Wuttig, L. Salamanca-Riba, I. Takeuchi, Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett. 92, 202904 (2008)

    Google Scholar 

  171. C.-J. Cheng, D. Kan, S.-H. Lim, W.R. McKenzie, P.R. Munroe, L.G. Salamanca-Riba, R.L. Withers, I. Takeuchi, V. Nagarajan, Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxially Sm-doped BiFeO3 thin films. Phys. Rev. B 80, 014109 (2009)

    Google Scholar 

  172. C.-J. Cheng, A.Y. Borisevich, D. Kan, I. Takeuchi, V. Nagarajan, Nanoscale structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588–2596 (2010)

    Google Scholar 

  173. D. Kan, L. Pálová, V. Anbusathaiah, C.-J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth substituted BiFeO3. Adv. Funct. Mater. 20, 1108–1115 (2010)

    Google Scholar 

  174. C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.-H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009)

    Google Scholar 

  175. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Google Scholar 

  176. C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Atomic structures of two rhombohedral ferroelectric phases in the Pb(Zr, Ti)O3 solid solution series. Solid State Commun. 7, 865–868 (1969)

    Google Scholar 

  177. C. Ederer, N.A. Spaldin, Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005)

    Google Scholar 

  178. P. Ravindran, R. Vidya, A. Kjekshus, H. FjellvĂĄg, Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412 (2006)

    Google Scholar 

  179. H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, A. Barthélémy, Evidence for room-temperature multiferroicity in a compound with giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009)

    Google Scholar 

  180. D. Ricinschi, K.Y. Yun, M. Okuyama, A mechanism for the 150 μC cm-2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J. Phys. Condens. Matter 18, L97–L105 (2006)

    Google Scholar 

  181. R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, R. Ramesh, A strain-driven morphotrophic phase boundary in BiFeO3. Science 326, 977–980 (2009)

    Google Scholar 

  182. Z. Chen, Z. Luo, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, T. Sritharan, Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films. Adv. Funct. Mater. 21, 133–138 (2011)

    Google Scholar 

  183. H. Christen, J.H. Nam, H.S. Kim, A.J. Hatt, N.A. Spaldin, Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films. Phys. Rev. B 83, 144107 (2011)

    Google Scholar 

  184. B. Dupé, I.C. Infante, G. Geneste, P.E. Janolin, M. Bibes, A. Barthélémy, S. Lisenkov, L. Bellaiche, S. Ravy, B. Dkhil, Competing phases in BiFeO3 thin films under compressive epitaxial strain. Phys. Rev. B 81, 144128 (2010)

    Google Scholar 

  185. D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S.V. Kalinin, A.P. Baddorf, A. Gupta, Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films. Nano Lett. 10, 2555–2561 (2010)

    Google Scholar 

  186. A. Kumar, S. Denev, R.J. Zeches, E. Vlahos, N.J. Podraza, A. Melville, D.G. Schlom, R. Ramesh, V. Gopalan, Probing mixed tetragonal/rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation. Appl. Phys. Lett. 97, 112903 (2010)

    Google Scholar 

  187. A.R. Damodaran, S. Lee, J. Karthik, S. MacClaren, L.W. Martin, Temperature and thickness evolution and epitaxial breakdown in highly-strained BiFeO3 thin films. Phys. Rev. B 85, 024113 (2012)

    Google Scholar 

  188. A.R. Damodaran, E. Breckenfeld, A.R. Choquette, L.W. Martin, Stabilization of mixed-phase structures in highly strained BiFeO3 thin films via chemical-alloying. Appl. Phys. Lett. 100, 082904 (2012)

    Google Scholar 

  189. J.X. Zhang, B. Xiang, Q. He, J. Seidel, R.J. Zeches, P. Yu, S.Y. Yang, C.H. Wang, Y.H. Chu, L.W. Martin, A.M. Minor, R. Ramesh, Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 6, 98–102 (2011)

    Google Scholar 

  190. J.F. Scott, Iso-structural phase transitions in BiFeO3. Adv. Mater. 22, 2106–2107 (2010)

    Google Scholar 

  191. J. Ouyang, W. Zhang, X. Huang, A.L. Roytburd, Thermodynamics of formation of tetragonal and rhombohedral heterophase polydomains in epitaxial ferroelectric thin films. Acta. Mater. 59, 3779–3791 (2011)

    Google Scholar 

  192. A.R. Damodaran, C.W. Liang, Q. He, C.Y. Peng, L. Chang, Y.H. Chu, L.W. Martin, Nanoscale structure and mechanism for enhanced electromechanical response of highly strained BiFeO3 thin films. Adv. Mater. 23, 3170–3175 (2011)

    Google Scholar 

  193. R.K. Vasudevan, Y. Liu, J. Li, W.I. Liang, A. Kumar, S. Jesse, Y.C. Chen, Y.H. Chu, V. Nagarajan, S.V. Kalinin, Nanoscale control of phase variants in strain-engineered BiFeO3. Nano Lett. 11, 3346–3354 (2011)

    Google Scholar 

  194. Q. He, Y.H. Chu, J.T. Heron, S.Y. Yang, W.I. Liang, C.Y. Kuo, H.J. Lin, P. Yu, C.W. Liang, R.J. Zeches, W.C. Kuo, J.Y. Juang, C.T. Chen, E. Arenholz, A. Scholl, R. Ramesh, Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2, 225 (2011)

    Google Scholar 

  195. K.T. Ko, M.H. Jung, Q. He, J.H. Lee, C.S. Woo, K. Chu, J. Seidel, B.G. Jeon, Y.S. Oh, K.H. Kim, W.I. Liang, H.J. Chen, Y.H. Chu, Y.H. Jeong, R. Ramesh, J.H. Park, C.H. Yang, Concurrent transition of ferroelectric and magnetic ordering near room temperature. Nat. Commun. 2, 567 (2011)

    Google Scholar 

  196. G.W. MacDougall, H.M. Christen, W. Siemons, M.D. Biegalski, J.L. Zarestky, S. Liang, E. Dagotto, S.E. Nagler, Antiferromagnetic transitions in “T-like” BiFeO3. Phys. Rev. B 85, 100406(R) (2012)

    Google Scholar 

  197. J. Kreisel, P. Jadhav, O. Chaix-Pluchery, M. Varela, N. Dix, F. Sanchez, J. Fontcuberta, A phase transition close to room temperature in BiFeO3 thin films. J. Phys. Condens. Matter 23, 342202 (2011)

    Google Scholar 

  198. W. Siemons, M.D. Biegalski, J.H. Nam, H.M. Christen, Temperature-driven structural phase transition in tetragonal-like BiFeO3. Appl. Phys. Express 4, 095801 (2011)

    Google Scholar 

  199. K.Y. Choi, S.H. Do, P. Lemmens, D. Wulferding, C.S. Woo, J.H. Lee, K. Chu, C.H. Yang, Anomalous low-energy phonons in nearly tetragonal BiFeO3 thin films. Phys. Rev. 84, 132408 (2011)

    Google Scholar 

  200. J.C. Wojdel, J. ĺñiguez, Ab initio indications for giant magnetoelectric effects driven by structural softness. Phys. Rev. Lett. 105, 037208 (2010)

    Google Scholar 

  201. H.J. Mamin, B.D. Terris, L.S. Fan, S. Hoen, R.C. Barrett, D. Rugar, High-density data storage using proximal probe techniques. IBM J. Res. Dev. 39, 681–700 (1995)

    Google Scholar 

  202. N.A. Hill, P. Battig, C. Daul, First principles search for multiferroism in BiCrO3. J. Phys. Chem. B 106, 3383–3388 (2002)

    Google Scholar 

  203. M. Murakami, S. Fujino, S.-H. Lim, C.J. Long, L.G. Salamanca-Riba, M. Wuttig, I. Takeuchi, V. Nagarajan, A. Varatharajan, Fabrication of multiferroic epitaxial BiCrO3 thin films. Appl. Phys. Lett. 88, 152902 (2006)

    Google Scholar 

  204. D.H. Kim, H.N. Lee, M. Varela, H.M. Christen, Antiferroelectricity in multiferroic BiCrO3 epitaxial films. Appl. Phys. Lett. 89, 162904 (2006)

    Google Scholar 

  205. A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamota, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, E. Takayama-Muromachi, Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 18, 798–803 (2006)

    Google Scholar 

  206. Y. Uratani, T. Shishidou, F. Ishii, T. Oguchi, First-principles predictions of giant electric polarization. Jpn. J. Appl. Phys. 44, 7130–7133 (2005)

    Google Scholar 

  207. S. Yasui, K. Nishida, H. Naganuma, S. Okamura, T. Iijima, H. Funakubo, Crystal structure analysis of epitaxial BiFeO3-BiCoO3 solid solution films grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 46, 6948–6951 (2007)

    Google Scholar 

  208. M. Sakai, A. Msauno, D. Kan, M. Hashisaka, K. Takata, M. Azume, M. Takano, Y. Shimakawa, Multiferroic thin films of Bi2NiMnO6 with ordered double-perovskite structure. Appl. Phys. Lett. 90, 072903 (2007)

    Google Scholar 

  209. N.A. Hill, Density functional studies of multiferroic magnetoelectrics. Annu. Rev. Mater. Res. 32, 1–37 (2002)

    Google Scholar 

  210. C. Ederer, N.A. Spaldin, Recent progress in first-principles studies of magnetoelectric multiferroics. Curr. Opin. Solid State Mater. Sci. 9, 128–139 (2005)

    Google Scholar 

  211. S. Picozzi, C. Ederer, First principles studies of multiferroic materials. J. Phys. Condens. Matter 21, 303201 (2009)

    Google Scholar 

  212. C.J. Fennie, K.M. Rabe, Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006)

    Google Scholar 

  213. C.J. Fennie, Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008)

    Google Scholar 

  214. T. Varga, A. Kumar, E. Vlahos, S. Denev, M. Park, S. Hong, T. Sanehira, Y. Wang, C.J. Fennie, S.K. Streiffer, X. Ke, P. Schiffer, V. Gopalan, J.F. Mitchell, Coexistence of weak ferromagnetism and ferroelectricity in high pressure LiNbO3-phase of FeTiO3. Phys. Rev. Lett. 103, 047601 (2009)

    Google Scholar 

  215. J.H. Lee, K.M. Rabe, Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010)

    Google Scholar 

  216. J. van den Boomgaard, D.R. Terrell, R.A.J. Born, An in-situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)

    Google Scholar 

  217. M. Avellaneda, G. Harshe, Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites. J. Intell. Mater. Syst. Struct. 5, 501–513 (1994)

    Google Scholar 

  218. J. Ryu, S. Priya, A.V. Carazo, K. Uchino, H. Kim, Effect of the magnetostrictive layer on magnetoelectric properties in PZT/Terfenol-D laminate composites. J. Am. Ceram. Soc. 84, 2905–2908 (2001)

    Google Scholar 

  219. S. Ryu, J.H. Park, H.M. Jang, Magnetoelectric coupling of [00l]-oriented Pb(Zr0.4Ti0.6)O3-Ni0.8Zn0.2Fe2O4 multilayered thin films. Appl. Phys. Lett. 91, 142910 (2007)

    Google Scholar 

  220. J. Ryu, A.V. Carazo, K. Uchino, H. Kim, Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J. Electroceram. 7, 17–24 (2001)

    Google Scholar 

  221. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001)

    Google Scholar 

  222. G. Srinivasan, E.T. Rasmussen, B.J. Levin, R. Hayes, Magnetoelectric effects in bilayers and multilayers of magnetorestrictive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 (2002)

    Google Scholar 

  223. G. Srinivasan, E.T. Rasmussen, A.A. Bush, K.E. Kamentsev, Structural and magnetoelectric properties of MFe2O4-PZT (M=Ni, Co) and Lax(Ca, Sr)1-xMnO3-PZT multilayer composites. Appl. Phys. A 78, 721–728 (2004)

    Google Scholar 

  224. J. Ryu, S. Priya, K. Uchino, H.E. Kim, Magnetoelectric laminate composites of piezoelectric and magnetorestrictive materials. J. Electroceram. 8, 107–119 (2002)

    Google Scholar 

  225. P. Murugavel, M.P. Singh, W. Prellier, B. Mercey, C. Simon, B. Raveau, The role of ferroelectric-ferromagnetic layers on the properties of superlattice-based multiferroics. J. Appl. Phys. 97, 103914 (2005)

    Google Scholar 

  226. S. Stein, M. Wuttig, D. Viehland, E. Quandt, Magnetoelectric effect in sputtered composites. J. Appl. Phys. 97, 10Q301 (2005)

    Google Scholar 

  227. M.I. Bichurin, V.M. Petrov, G. Srinivasan, Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B 68, 054402 (2003)

    Google Scholar 

  228. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and directions. J. Appl. Phys. 103, 031101 (2008)

    Google Scholar 

  229. J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, Magnetoelectric laminate composites: an overview. J. Am. Ceram. Soc. 91, 351–358 (2008)

    Google Scholar 

  230. L. Yan, Y. Yang, Z. Wang, Z. Xing, J. Li, D. Viehland, Review of magnetoelectric perovskite-spinel self-assembled nano-composite thin films. J. Mater. Sci. 44, 5080–5094 (2009)

    Google Scholar 

  231. G. Srinivasan, Magnetoelectric composites. Ann. Rev. Mater. Sci. 40, 153–178 (2010)

    Google Scholar 

  232. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburg, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004)

    Google Scholar 

  233. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M.P. Cruz, P.-L. Yang, D. Hao, R. Ramesh, Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586–1590 (2007)

    Google Scholar 

  234. H. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M.P. Cruz, L.-Q. Chen, U. Dahmen, R. Ramesh, Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 7, 1401–1407 (2006)

    Google Scholar 

  235. J. Li, I. Levin, J. Slutsker, V. Provenzano, P.K. Schenck, R. Ramesh, J. Ouyang, A.L. Roytburd, Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005)

    Google Scholar 

  236. J.G. Wan, X.W. Wang, Y.J. Wu, M. Zeng, Y. Wang, H. Jiang, W.Q. Zhou, G.H. Wang, J.M. Liu, Magnetoelectric CoFe2O4-Pb(Zr, Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 86, 122501 (2005)

    Google Scholar 

  237. S. Ren, M. Wuttig, Spinodally synthesized magnetoelectric. Appl. Phys. Lett. 91, 083501 (2007)

    Google Scholar 

  238. Q. Zhan, R. Yu, S.P. Crane, H. Zheng, C. Kisielowski, R. Ramesh, Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006)

    Google Scholar 

  239. M. Murakami, S. Fujino, S.-H. Lim, L.G. Salamanca-Riba, M. Wuttig, I. Takeuchi, B. Varughese, H. Sugaya, T. Hasegawa, S.E. Lofland, Microstructure and phase control in Bi-Fe-O multiferroic nanocomposite thin films. Appl. Phys. Lett. 88, 112505 (2006)

    Google Scholar 

  240. H. Ryu, P. Murugavel, J.H. Lee, S.C. Chae, T.W. Noh, Y.S. Oh, H.J. Kim, K.H. Kim, J.H. Jang, M. Kim, C. Bae, J.-G. Park, Magnetoelectric effects in nanoparticulate Pb(Zr0.52Ti0.48)O3-NiFe2O4 composite films. Appl. Phys. Lett. 89, 102907 (2006)

    Google Scholar 

  241. J.-G. Wan, Y. Weng, Y. Wu, Z. Li, J.-M. Liu, G. Wang, Controllable phase connectivity and magnetoelectric coupling behavior in CoFe2O4-Pb(Zr, Ti)O3 nanostructured films. Nanotechnology 18, 465708 (2007)

    Google Scholar 

  242. F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S.-Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D.G. Schlom, Y. Suzuki, R. Ramesh, Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005)

    Google Scholar 

  243. M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z. Cai, K.S. Ziemer, J.Y. Huang, N.X. Sun, Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 90, 152501 (2007)

    Google Scholar 

  244. C. Binek, B. Doudin, Magnetoelectronics with magnetoelectrics. J. Phys. Condens. Matter 17, L39–L44 (2005)

    Google Scholar 

  245. A. Ney, C. Pampuch, R. Koch, K.H. Ploog, Programmable computing with single magnetoresistive element. Nature 425, 485–487 (2003)

    Google Scholar 

  246. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Google Scholar 

  247. J.C. Slonczewski, Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, 261–268 (1999)

    Google Scholar 

  248. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Google Scholar 

  249. M. Tsoi, A.G.M. Jansen, W.-C. Chiang, M. Seck, V. Tsoi, P. Wyder, Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998)

    Google Scholar 

  250. J.E. Wegrowe, D. Kelly, Y. Jaccard, P. Guittienne, J.-P. Ansermet, Current-induced magnetization reversal in magnetic nanowires. Europhys. Lett. 45, 626–632 (1999)

    Google Scholar 

  251. E.B. Myers, D.C. Ralph, J.A. Katine, R.N. Louie, R.A. Buhrman, Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999)

    Google Scholar 

  252. S. Urazhdin, N.O. Birge, W.P. Pratt Jr., J. Bass, Current-driven magnetic excitations in permally-based multilayer nanopillars. Phys. Rev. Lett. 91, 146803 (2003)

    Google Scholar 

  253. Y. Liu, Z. Zhang, P.P. Freitas, J.L. Martins, Current-induced magnetization switching in magnetic tunnel junctions. Appl. Phys. Lett. 82, 2871 (2003)

    Google Scholar 

  254. Y. Huai, F. Albert, P. Nguyen, M. Pakala, T. Valet, Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118 (2004)

    Google Scholar 

  255. T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R.L. Greene, R. Ramesh, T. Venkatesan, Phys. Rev. Lett. 86, 5998–6001 (2001)

    Google Scholar 

  256. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, New York, 2003)

    Google Scholar 

  257. J. Dho, M.G. Blamire, Competing functionality in multiferroic YMnO3. Appl. Phys. Lett. 87, 252504 (2005)

    Google Scholar 

  258. X. Martí, F. Sánchez, J. Fontcuberta, M.V. García-Cuenca, C. Ferrater, M. Varela, Exchange bias between magnetoelectric YMnO3 and ferromagnetic SrRuO3 epitaxial films. J. Appl. Phys. 99, 08P302 (2006)

    Google Scholar 

  259. J. Dho, X. Qi, H. Kim, J.L. MacManus-Driscoll, M.G. Blamire, Large electric polarization and exchange bias in multiferroic BiFeO3. Adv. Mater. 18, 1445–1448 (2006)

    Google Scholar 

  260. H. Béa, M. Bibes, S. Cherifi, F. Nolting, B. Warot-Fonrose, S. Fusil, G. Herranz, C. Dernalot, E. Jacquet, K. Bouzehouane, A. Barthélémy, Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 89, 242114 (2006)

    Google Scholar 

  261. L.W. Martin, Y.-H. Chu, Q. Zhan, R. Ramesh, S.J. Han, S.X. Wang, M. Warusawithana, D.G. Schlom, Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl. Phys. Lett. 91, 172513 (2007)

    Google Scholar 

  262. P. Borisov, A. Hochstrat, X. Chen, W. Kleeman, C. Binek, Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005)

    Google Scholar 

  263. V. Laukhin, V. Skumryev, X. Martí, D. Hrabovsky, F. Sánchez, M.V. García-Cuenca, C. Ferrater, M. Varela, U. Lünders, J. Fontcuberta, Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006)

    Google Scholar 

  264. H. Béa, M. Bibes, F. Ott, B. Dupé, X.H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouehouane, A. Barthélémy, Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008)

    Google Scholar 

  265. Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodriguez, A. Scholl, S.X. Wang, R. Ramesh, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008)

    Google Scholar 

  266. X. He, N. Wu, A.N. Caruso, E. Vescovo, K.D. Belaschenko, P.A. Dowben, C. Binek, Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010)

    Google Scholar 

  267. J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007)

    Google Scholar 

  268. C.M. Cristensen, The Innovator’s Dilemma (Harvard Business School Press, Boston, MA, 1997)

    Google Scholar 

  269. S. Ju, T.-Y. Cai, G.-Y. Guo, Z.-Y. Li, Electrically controllable spin filtering and switching in multiferroic tunneling junctions. Phys. Rev. B 75, 064419 (2007)

    Google Scholar 

  270. F. Yang, M.H. Tang, Z. Ye, Y.C. Zhou, X.J. Zheng, J.X. Tang, J.J. Zhang, J. He, Eight logic states of tunneling magnetoelectroresistance in multiferroic tunnel junctions. J. Appl. Phys. 102, 044504 (2007)

    Google Scholar 

  271. C. Jia, J. Berakdar, Multiferroic oxides-based flash memory and spin-field-effect transitor. Appl. Phys. Lett. 95, 012105 (2009)

    Google Scholar 

  272. K. Abraha, D.R. Tilley, Theory of far infrared properties of magnetic surfaces, films, and superlattices. Surf. Sci. Rep. 24, 125–222 (1996)

    Google Scholar 

  273. G.A. Smolenskii, I.E. Chupis, Ferroelectromagnets. Sov. Phys. Usp. 25, 475–493 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lane W. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, L.W., Chu, YH., Ramesh, R. (2014). Emerging Multiferroic Memories. In: Hong, S., Auciello, O., Wouters, D. (eds) Emerging Non-Volatile Memories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7537-9_3

Download citation

Publish with us

Policies and ethics