Skip to main content
Log in

Photostimulated growth of In-In2O3 films

  • Published:
Inorganic Materials Aims and scope

Abstract

Exposure to light of intensity I =1.12 × 1015 to 7.0 × 1015 photons/(cm2 s) at λ = 360 nm and T = 293 K produces significant changes in the absorption and reflection spectra and weight of indium films 1 to 32 nm in thickness. Kinetic curves for the photochemical transformation of the indium films are adequately represented by a linear, inverse logarithmic, parabolic, or logarithmic rate law. We have measured the contact potential difference across the In and In2O3 films and the photovoltage in the In-In2O3 system. A model has been proposed which includes the generation and redistribution of nonequilibrium charge carriers in the In-In2O3 interfacial field, oxygen adsorption, In3+ diffusion, and In2O3 formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Indutnyi, I.Z., Kostyshin, M.T., Kasyarum, O.P., et al., Fotostimulirovannye vzaimodeistviya v strukturakh metall-poluprovodnik (Photostimulated Interactions in Metal-Semiconductor Structures), Kiev: Naukova Dumka, 1992.

    Google Scholar 

  2. Strikha, V.I. and Buzaneva, E.V., Fizicheskie osnovy nadezhnosti kontaktov metall-poluprovodnik v integral’noi elektronike (Physical Principles behind the Reliability of Metal-Semiconductor Contacts in Integrated Electronics), Moscow: Radio i Svyaz’, 1987.

    Google Scholar 

  3. Ryzhonkov, D.I., Levina, V.V., and Dzidziguri, E.L., Nanomaterialy (Nanomaterials), Moscow: BINOM, 2008.

    Google Scholar 

  4. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Fizmatlit, 2009.

    Google Scholar 

  5. Eliseev, A.A. and Lukashin, A.V., Funktsional’nye nanomaterialy (Functional Nanomaterials), Tret’yakov, Yu.D., Ed., Moscow: Fizmatlit, 2010.

  6. Fedorov, P.I. and Akchurin, R.Kh., Indii (Indium), Moscow, 2000.

    Google Scholar 

  7. Logacheva, V.A., Grigoryan, G.S., Solodukha, A.M., et al., Phase composition and electrical conductivity of indium tungstate films produced from bilayer structures, Inorg. Mater., 2008, vol. 44, no. 3, pp. 311–315.

    Article  CAS  Google Scholar 

  8. Afonin, N.N., Logacheva, V.A., Khoviv, A.M., et al., Component redistribution during Nb and In/Nb film growth on single-crystal silicon, Inorg. Mater., 2009, vol. 45, no. 9, pp. 998–1002.

    Article  CAS  Google Scholar 

  9. Surovoi, E.P. and Eremeeva, G.O., General aspects of the growth of In-In2O3 films, Inorg. Mater., 2012, vol. 48, no. 7, pp. 716–720.

    Article  CAS  Google Scholar 

  10. Gainutdinov, I.S., Nesmelov, E.A., Aliakberov, R.D., et al., Effect of surface conduction on the optical properties of tin-doped indium oxide films, Opt. Zh., 2005, vol. 72, no. 10, pp. 63–69.

    Google Scholar 

  11. Gevorkyan, V.A., Aroutiounian, V.M., Gambaryan, K.M., et al., InAsSbP/InAs heterostructures for thermophotovoltaic converters: Growth technology and properties, Tech. Phys. Lett., 2008, vol. 34, no. 1, pp. 69–71.

    Article  CAS  Google Scholar 

  12. Lokhande, C.D., Barkschat, A., and Tributsch, H., Contact angle measurements: An empirical diagnostic method for evaluation of thin film solar cell absorbers (CuInS2), Sol. Energy Mater. Sol. Cells, 2003, vol. 79, no. 3, pp. 293–304.

    Article  CAS  Google Scholar 

  13. Bobreshov, I.V., Lukin, A.N., Logacheva, V.A., et al., Behavior of the intrinsic absorption edge in structures based on indium and tin oxides, Vestn. Voronezhsk. Gos. Tekh. Univ., 2006, vol. 2, no. 11, pp. 92–95.

    Google Scholar 

  14. Afonin, N.N., Logacheva, V.A., Shramchenko, Yu.S., et al., Phase transformations and component redistribution during the growth of Nb, In-Nb, and Sn-Nb film systems on single-crystal silicon, Kondens. Sredy Mezhfaznye Granitsy, 2009, vol. 11, no. 1, pp. 21–30.

    CAS  Google Scholar 

  15. Zaitseva, E.A., Zakirova, R.M., Krylov, P.N., et al., Effect of ionic processing during rf magnetron sputtering on the thickness and refractive index of ITO films, Vestn. Udmurtsk. Univ., 2012, nos. 2–4, pp. 26–30.

    Google Scholar 

  16. Borisova, N.V. and Surovoi, E.P., General aspects of the formation of aluminum-alumina nanophase systems during heat treatment of aluminum films, Korroz.: Mater., Zashch., 2007, no. 6, pp. 13–18.

    Google Scholar 

  17. Surovoi, E.P., Bin, S.V., and Borisova, N.V., Corrosion of lead nanofilms, Korroz.: Mater., Zashch., 2008, no. 11, pp. 4–10.

    Google Scholar 

  18. Surovoy, E.P. and Borisova, N.V., Regularities of photostimulated conversions in nanometer aluminum layers, Russ. J. Phys. Chem. A, 2009, vol. 83, no. 13, pp. 2302–2307.

    Article  Google Scholar 

  19. Surovoi, E.P. and Borisova, N.V., Thermal transformations in nanosized copper layers, Russ. J. Phys. Chem. A, 2010, vol. 84, no. 2, pp. 255–260.

    Article  CAS  Google Scholar 

  20. Surovoi, E.P., Bugerko, L.N., Surovaya, V.E., et al., Kinetic regularities of thermal transformations in nanosized bismuth films, Russ. J. Phys. Chem. A, 2012, vol. 86, no. 4, pp. 621–627.

    Article  CAS  Google Scholar 

  21. Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.

    Google Scholar 

  22. Kubaschewski, O. and Hopkins, B.E., Oxidation of Metals and Alloys, London: Butterworths, 1962, 2nd ed.

    Google Scholar 

  23. Surovoy, E.P., Borisova, N.V., and Titov, I.V., Investigation of energy action influence on WO3 (MoO3)-metal system, Izv. Vyssh. Uchebn. Zaved., Fiz., 2006, no. 10, suppl., pp. 338–340.

    Google Scholar 

  24. Surovoi, E.P., Bin, S.V., and Borisova, N.V., Photostimulated changes in WO3 nanosized films, Russ. J. Phys. Chem. A, 2010, vol. 84, no. 8, pp. 1401–1405.

    Article  CAS  Google Scholar 

  25. Surovoi, E.P. and Bugerko, L.N., Thermally stimulated gas release from silver azide-metal systems, Khim. Fiz., 2002, vol. 21, no. 7, pp. 74–78.

    CAS  Google Scholar 

  26. Surovoi, E.P., Titov, I.V., and Bugerko, L.N., Surface condition of lead, silver, and thallium azides during photolysis studied by contact potential difference measurements, Materialovedenie, 2005, no. 7, pp. 15–20.

    Google Scholar 

  27. Bube, R.H., Photoconductivity of Solids, New York: Wiley, 1960.

    Google Scholar 

  28. Hauffe, K., Reaktionen in und an festen Stoffen, Berlin: Springer, 1955.

    Book  Google Scholar 

  29. Barret, P., Cinétique hétérogène, Paris: Gauthier Villars, 1973.

    Google Scholar 

  30. Vol’kenshtein, F.F., Fizikokhimiya poverkhnosti poluprovodnikov (Physical Chemistry of Semiconductor Surfaces), Moscow: Nauka, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Surovoi.

Additional information

Original Russian Text © E.P. Surovoi, G.O. Ramazanova, 2013, published in Neorganicheskie Materialy, 2013, Vol. 49, No. 10, pp. 1065–1070.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surovoi, E.P., Ramazanova, G.O. Photostimulated growth of In-In2O3 films. Inorg Mater 49, 988–992 (2013). https://doi.org/10.1134/S0020168513090185

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168513090185

Keywords

Navigation