Skip to main content
Log in

Synthesis and electrical properties of (BaTiO3)1 −x (K0.5Bi0.5TiO3) x solid solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

(BaTiO3)1 − x (K0.5Bi0.5TiO3) x solid solutions exhibiting positive temperature coefficient of resistance behavior have been prepared using BaTiO3 presynthesized through oxalate coprecipitation. The peak in their dielectric permittivity has been shown to shift to higher temperatures (above 120°C) with increasing x. We have examined the effect of K0.5Bi0.5TiO3 content on the microstructure of the (BaTiO3)1 − x (K0.5Bi0.5TiO3) x solid solutions. The results demonstrate that, with increasing x, both the minimum and maximum resistivities of the materials in the temperature range of their positive temperature coefficient of resistance behavior increase. The materials prepared using barium titanate presynthesized by the oxalate route have higher Curie temperatures and temperatures where they exhibit positive temperature coefficient of resistance behavior and lower minimum resistivities than do the materials prepared by solid-state reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poluprovodniki na osnove titanata bariya (Barium Titanate Semiconductors), Okazaki, M., Ed., Moscow: Energoizdat, 1982 (translated from Japanese).

    Google Scholar 

  2. Yanchevskii, O.Z., V’yunov, O.I., and Belous, A.G., Fabrication and Properties of Semiconducting Barium Lead Titanate Ceramics Containing Low-Melting Glass Additions, Inorg. Mater., 2003, vol. 39, no. 6, pp. 645–651.

    Article  CAS  Google Scholar 

  3. Heywang, W., Resistivity Anomaly in Doped Barium Titanate, J. Am. Ceram. Soc., 1964, vol. 47, no. 10, pp. 484–490.

    Article  CAS  Google Scholar 

  4. Araki, S., Honma, T., Yanagihara, S., and Ushio, K., Recovery of Slowed Nerve Conduction Velocity in Lead-Exposed Workers, Int. Arch. Occup. Environ. Health, 1980, vol. 46, pp. 151–157.

    Article  CAS  Google Scholar 

  5. Awad, E., Karim, M., Hamed, A., Elhaimi, Y., and Osman, Y., Effects of Exposure to Lead among Lead Acid Battery Factory Workers in Sudan, Arch. Environ. Health, 1986, vol. 41, pp. 261–265.

    Article  Google Scholar 

  6. Bashir, R., Khan, D., Saleem, M., Zaman, K., and Malik, I., Blood Lead Levels and Anemia in Lead Exposed Workers, J. Pak. Med. Assoc., 1995, vol. 45, no. 3, pp. 64–66.

    CAS  Google Scholar 

  7. Bernard, B. and Becker, C., Environmental Lead Exposure and the Kidney, Clin. Toxicol., 1988, vol. 26, pp. 1–34.

    Article  CAS  Google Scholar 

  8. Carrington, C., Sheehan, D., and Bolger, P., Hazard Assessment of Lead, Food Add Contam., 1993, vol. 10, no. 3, pp. 325–335.

    Article  CAS  Google Scholar 

  9. Shimada, T., Touji, K., Katsuyama, Y., et al., Lead Free PTCR Ceramics and Its Electrical Properties, J. Eur. Ceram. Soc., 2007, vol. 27, nos. 13–15, pp. 3877–3882.

    Article  CAS  Google Scholar 

  10. Pu, Y., Wei, J., Mao, Y., and Wang, J., Positive Temperature Coefficient of Resistivity Behavior of Niobium-Doped (1 − x)BaTiO3−x Bi0.5Li0.5TiO3 Ceramics, J. Alloys Compd., 2010, vol. 498, no. 2, pp. L5–L7.

    Article  CAS  Google Scholar 

  11. Huo, W. and Qu, Y., Effects of Bi1/2Na1/2TiO3 on the Curie Temperature and the PTC Effects of BaTiO3-Based Positive Temperature Coefficient Ceramics, Sens. Actuators, A, 2006, vol. 128, no. 2, pp. 265–269.

    Article  CAS  Google Scholar 

  12. Takeda, H., Harinaka, H., Shiosaki, T., et al., Fabrication and Positive Temperature Coefficient of Resistivity Properties of Semiconducting Ceramics Based on the BaTiO3-(Bi1/2K1/2)TiO3 System, J. Eur. Ceram. Soc., 2010, vol. 30, no. 2, pp. 555–559.

    Article  CAS  Google Scholar 

  13. Viviani, M., Buscaglia, M.T., Buscaglia, V., et al., Analysis of Conductivity and PTCR Effect in Er-Doped BaTiO3 Ceramics, J. Eur. Ceram. Soc., 2004, vol. 24, no. 6, pp. 1221–1225.

    Article  CAS  Google Scholar 

  14. Vijaya Bhaskar Rao, P., Ramana, E.V., and Bhima Sankaram, T., Electrical Properties of K0.5Bi0.5TiO3, J. Alloys Compd., 2009, vol. 467, nos. 1–2, pp. 293–298.

    Google Scholar 

  15. Hiruma, Y., Nagata, H., and Takenaka, T., Thermal Depoling Process and Piezoelectric Properties of Bismuth Sodium Titanate Ceramics, J. Appl. Phys., 2009, vol. 105, no. 8, paper 084 112.

  16. König, J., Spreitzer, M., Jančar, B., et al., The Thermal Decomposition of K0.5Bi0.5TiO3 Ceramics, J. Eur. Ceram. Soc., 2009, vol. 29, no. 9, pp. 1695–1701.

    Article  CAS  Google Scholar 

  17. Viviani, M., Buscaglia, M.T., Buscaglia, V., et al., Analysis of Conductivity and PTCR Effect in Er-Doped BaTiO3 Ceramics, J. Eur. Ceram. Soc., 2004, vol. 24, no. 6, pp. 1221–1225.

    Article  CAS  Google Scholar 

  18. Vijaya Bhaskar Rao, P., Ramana, E.V., and Bhima Sankaram, T., Electrical Properties of K0.5Bi0.5TiO3, J. Alloys Compd., 2009, vol. 467, nos. 1–2, pp. 293–298.

    Google Scholar 

  19. Tangwiwat, S. and Milne, S., Barium Titanate Sols Prepared by a Diol-Based Sol-Gel Route, J. Non-Cryst. Solids, 2005, vol. 351, nos. 12–13, pp. 976–980.

    Article  CAS  Google Scholar 

  20. Luan, W., Gao, L., and Guo, J., Study on Drying Stage of Nanoscale Powder Preparation, Nanostruct. Mater., 1998, vol. 10, no. 7, pp. 1119–1125.

    Article  CAS  Google Scholar 

  21. Kwon, S. and Yoon, D., Effects of Heat Treatment and Particle Size on the Tetragonality of Nano-Sized Barium Titanate Powder, Ceram. Int., 2007, vol. 33, no. 7, pp. 1357–1362.

    Article  CAS  Google Scholar 

  22. Fernandez, J.F., Duran, P., and Moure, C., Synthesis of Barium Titanate by the Suspension-Coprecipitation Method in Oxalic Acid, J. Mater. Sci. Lett., 1992, vol. 11, no. 17, pp. 1188–1190.

    Article  CAS  Google Scholar 

  23. Zazhigalov, V.A., Sidorchuk, V.V., Khalameida, S.V., and Kuznetsova, L.S., Mechanochemical Synthesis of BaTiO3 from Barium Titanyl Oxalate, Inorg. Mater., 2008, vol. 44, no. 6, pp. 641–645.

    Article  CAS  Google Scholar 

  24. Malghe, Y.S., Gurjar, A.V., and Dharwadkar, S.R., Synthesis of BaTiO3 Powder from Barium Titanyl Oxalate (BTO) Precursor Employing Microwave Heating Technique, Bull. Mater. Sci., 2004, vol. 27, no. 3, pp. 217–220.

    Article  CAS  Google Scholar 

  25. Gijp, S., Winnubst, L., and Verweij, H., Peroxo-Oxalate Preparation of Doped Barium Titanate, J. Am. Ceram. Soc., 1999, vol. 82, no. 5, pp. 1175–1180.

    Article  Google Scholar 

  26. V’yunov O.I., Plutenko, T.O., and Belous, A.G., PTCR Effect of Solid Solutions Based on the (1 − x)BaTiO3−x Na0.5Bi0.5TiO3 System, Chem. Met. Alloys, 2010, vol. 3, pp. 120–125.

    Google Scholar 

  27. Wang, D.Y. and Umeya, K., Electrical Properties of PTCR Barium Titanate, J. Am. Ceram. Soc., 1990, vol. 73, no. 3, pp. 669–677.

    Article  CAS  Google Scholar 

  28. Morrison, F.D., Sinclair, D.C., and West, A.R., An Alternative Explanation for the Origin of the Resistivity Anomaly in La-Doped BaTiO3, J. Am. Ceram. Soc., 2001, vol. 84, no. 2, pp. 474–476.

    Article  CAS  Google Scholar 

  29. Morrison, F.D., Sinclair, D.C., and West, A.R., Characterization of Lanthanum-Doped Barium Titanate Ceramics Using Impedance Spectroscopy, J. Am. Ceram. Soc., 2001, vol. 84, no. 3, pp. 531–538.

    Article  CAS  Google Scholar 

  30. Sinclair, D.C. and West, A.R., Use of Succinic Acid to Test the Stability of PTCR Barium Titanate Ceramics under Reducing Conditions, J. Am. Ceram. Soc., 1995, vol. 78, no. 1, pp. 241–244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. V’yunov.

Additional information

Original Russian Text © T.A. Plutenko, O.I. V’yunov, A.G. Belous, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 12, pp. 1357–1364.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plutenko, T.A., V’yunov, O.I. & Belous, A.G. Synthesis and electrical properties of (BaTiO3)1 −x (K0.5Bi0.5TiO3) x solid solutions. Inorg Mater 48, 1183–1189 (2012). https://doi.org/10.1134/S0020168512120047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512120047

Keywords

Navigation