Skip to main content
Log in

Hydrogenated microcrystalline silicon for solar cells

  • Published:
Inorganic Materials Aims and scope

Abstract

We report a detailed study of the deposition, composition, structure, and photoelectric properties of low-temperature microcrystalline silicon layers produced by a novel method, which takes advantage of the activation of gas mixtures in an electron-beam plasma and the transport of the activated particles to the deposition zone at a supersonic speed. Under optimal conditions, we have reached deposition rates above 5 nm/s on substrates 150 × 150 mm in dimensions. The method under development is potentially attractive for the fabrication of thin-film solar cells through roll-to-roll processing on cheap substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, M.A., Third Generation Photovoltaics, in Advanced Solar Energy Conversion, Springer, 2003.

  2. Poortmans, J. and Arkhipov, V., Thin Film Solar Cells. Fabrication, Characterization and Application, in Wiley Series in Materials for Electronic and Optoelectronic Application, 2006.

  3. Parashchuk, D.Yu. and Kokorin, A.I., Modern Photo-electric and Photochemical Solar Energy Conversion Techniques, Zh. Ross. Khim. O-va. im. D. I. Mendeleeva, 2008, vol. 52, pp. 107–117.

    CAS  Google Scholar 

  4. Guha, S., High Efficiency Amorphous and Nanocrystalline Silicon Solar Cells, Phys. Status Solidi A, 2010, vol. 207, pp. 671–677.

    Article  Google Scholar 

  5. Mukhopadhyay, S., Goswami, R., and Ray, S., Light Induced Degradation in Nanocrystalline Si Films and Related Solar Cells: Role of Crystalline Fraction, Sol. Energy Mater. Sol. Cells, 2009, vol. 93, pp. 674–679.

    Article  CAS  Google Scholar 

  6. Sharafutdinov, R.G., Khmel, S.Ya., Shchukin, V.G., et al., Gas-Jet Electron Beam Plasma Chemical Vapor Deposition Method for Solar Cell Application, Sol. Energy Mater. Sol. Cells, 2005, vol. 89, pp. 99–111.

    Article  CAS  Google Scholar 

  7. Bilyalov, R., Poortmans, J., Sharafutdinov, R., et al., Micro- and Polycrystalline Silicon Films for Solar Cells Obtained by Gas-Jet Electron-Beam PECVD Method, IEE Proc. Circuits, Devices Systems, 2003, vol. 150, no. 4, pp. 293–299.

    Article  Google Scholar 

  8. Das, D., Jana, M., Barua, A.K., et al., Correlation of Electrical, Thermal and Structural Properties of Microcrystalline Silicon Films, Jpn. J. Appl. Phys., A, 2002, vol. 41, no. 3, pp. L229–L232.

    Article  CAS  Google Scholar 

  9. Alpium, P., Chu, V., and Conde, J.P., Amorphous and Microcrystalline Silicon Films Grown at Low Temperatures by Radio-Frequency and Hot-Wire Chemical Vapor Deposition, J. Appl. Phys., 1999, vol. 86, no. 7, pp. 3812–3821.

    Article  Google Scholar 

  10. Kamei, T., Stradins, P., and Matsuda, A., Effects of Embedded Crystallites in Amorphous Silicon on Light-Induced Defect Creation, Appl. Phys. Lett., 1999, vol. 74, no. 12, pp. 1707–1709.

    Article  CAS  Google Scholar 

  11. Vetterl, O., Finger, F., Carius, R., et al., Intrinsic Microcrystalline Silicon: A New Material for Photovoltaics, Sol. Energy Mater. Sol. Cells, 2000, vol. 62, pp. 97–108.

    Article  CAS  Google Scholar 

  12. Jana, M., Das D., Barua A.K. Promotion of Microcrystallization by Argon in Moderately Hydrogen Diluted Silane Plasma, Sol. Energy Mater. Sol. Cells, 2002, vol. 74, pp. 407–413.

    Article  CAS  Google Scholar 

  13. Wagner, T.A., Oberbeck, L., and Bergman, R.B., Low-Temperature Epitaxial Silicon Film Deposited by Ion-Assisted Deposition, Mater. Sci. Eng., B, 2002, vol. 89, pp. 319–322.

    Article  Google Scholar 

  14. Grimmett, G., Percolation and Disordered Systems, Berlin: Springer, 1997.

    Google Scholar 

  15. Mauk, M.G., Rand, J.A., Jonczyk, R., et al., Solar-Grade Silicon: The Next Decade, Proc. 3rd World Conf. Photovoltaic Energy Conversion, Osaka, 2003, vol. 1, pp. 939–942.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Semenova.

Additional information

Original Russian Text © R.G. Sharafutdinov, V.G. Shchukin, O.I. Semenova, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 5, pp. 523–529.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharafutdinov, R.G., Shchukin, V.G. & Semenova, O.I. Hydrogenated microcrystalline silicon for solar cells. Inorg Mater 48, 445–450 (2012). https://doi.org/10.1134/S0020168512050172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512050172

Keywords

Navigation