Skip to main content
Log in

Heat capacity of solid AIISe and AIITe above 298 K

  • Published:
Inorganic Materials Aims and scope

Abstract

We analyze our and others’ heat capacity data for the Group II selenides and tellurides at temperatures above 298 K and recommend the most reliable C p (T) results for these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mills, K.C., Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, London: Butterworths, 1974.

    Google Scholar 

  2. Gerasimov, Ya.I., Krestovnikov, A.N., and Gorbov, S.I., Khimicheskaya termodinamika v tsvetnoi metallurgii (Chemical Thermodynamics in Nonferrous Metallurgy), Moscow: Metallurgiya, 1974, vol. 6.

    Google Scholar 

  3. Knacke, O., Kubaschewski, O., and Hesselmann, K., Thermodynamic Properties of Inorganic Substances, Berlin: Springer, 1992, 2nd ed.

    Google Scholar 

  4. Pashinkin, A.S., Fedorov, V.A., Malkova, A.S., and Mikhailova, M.S., Heat Capacity of GaBV and InBV (BV-P, As, Sb) above 298 K, Inorg. Mater., 2010, vol. 46, no. 9, pp. 1007–1012.

    Article  CAS  Google Scholar 

  5. Regel’, A.R. and Glazov, V.M., Periodicheskii zakon i fizicheskie svoistva elektronnykh rasplavov (The Periodic Law and Physical Properties of Electronic Melts), Moscow: Nauka, 1978.

    Google Scholar 

  6. Pavlova, L.M., Pashinkin, A.S., Gaev, D.S., et al., Heat Capacity of Cadmium Telluride at Medium and High Temperatures, Teplofiz. Vys. Temp., 2006, vol. 44, no. 6, pp. 852–860.

    Google Scholar 

  7. Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnik (Thermodynamic Properties of Pure Substances: A Handbook), Glushko, V.P., Ed., Moscow: Nauka, 1978, vol. 1, part 1.

    Google Scholar 

  8. Pashinkin, A.S. and Kasenov, B.K., Eksperimental’nye metody khimicheskoi termodinamiki (Experimental Methods in Chemical Thermodynamics), Almaty: Gylym, 2003.

    Google Scholar 

  9. Sirota, N.N., Petrova, Zh.K., and Sokolovskii, T.D., Heat Capacity of Zinc Selenide from 4.2 to 300 K, Dokl. Akad. Nauk BSSR, 1980, vol. 24, no. 3, pp. 214–217.

    CAS  Google Scholar 

  10. Petrova, Zh.K., Low-Temperature Thermodynamic Properties of Zinc and Cadmium Chalcogenides, in Termodinamika i poluprovodnikovoe materialovedenie (Thermodynamics and Semiconductor Materials Research), Moscow: Mosk. Inst. Elektron. Tekh., 1980, pp. 118–124.

    Google Scholar 

  11. Pashinkin, A.S., Malkova, A.S., Zharov, Vl.V., et al., Heat Capacity of Zinc Selenide, Izv. Akad. Nauk SSSR, Neorg. Mater., 1989, vol. 25, no. 10, pp. 1477–1479.

    Google Scholar 

  12. Gerasimov, Ya.I., Krestovnikov, A.N., and Shakhov, A.S., Khimicheskaya termodinamika v tsvetnoi metallurgii (Chemical Thermodynamics in Nonferrous Metallurgy), Moscow: Metallurgizdat, 1960, vol. 1.

    Google Scholar 

  13. Gadzhiev, G.G. and Shakhabudinov, Ya.M., Thermal Properties of ZnSe Optimal Ceramics, Opt.-Mekh. Prom-st., 1991, no. 5, pp. 51–53.

  14. Gadzhiev, G.G., Ismailov, Sh.M., and Dadashev, A.I., Thermal Properties of II-VI Based Ceramics, Teplofiz. Vys. Temp., 1993, vol. 31, no. 3, pp. 390–394.

    CAS  Google Scholar 

  15. Pashinkin, A.S. and Malkova, A.S., Heat Capacity of Zinc Selenide, Russ. J. Phys. Chem. A, 2003, vol. 77, no. 12, pp. 2068–2069.

    Google Scholar 

  16. Yamaguchi, K., Kameda, K., Takeda, Y., and Itagaki, K., Measurements of High Temperature Heat Content of II–VI and IV–VI (II: Zn, Cd; IV: Sn, Pb, VI: Se, Te), Mater. Trans., JIM, 1994, vol. 35, no. 2, pp. 118–124.

    CAS  Google Scholar 

  17. Demidenko, A.F. and Mal’tsev, A.K., Heat Capacity of Zinc Telluride from 56 to 300 K and the Entropy and Enthalpy of CdS, CdSe, CdTe, and ZnTe, Izv. Akad. Nauk SSSR, Neorg. Mater., 1969, vol. 5, no. 1, pp. 152–157.

    Google Scholar 

  18. Gurvich, L.V., IVTANTERMO, a Database of Thermodynamic Properties of Substances, Elektron. Tekh., Ser. 6: Mater., 1984, no. 9 (194), pp. 36–42.

  19. Malkova, A.S., Zharov, Vl.V., Shmoilova, G.I., and Pashinkin, A.S., Heat Capacity of Zinc and Cadmium Tellurides from 360 to 760 K, Zh. Fiz. Khim., 1989, vol. 63, no. 1, pp. 41–44.

    CAS  Google Scholar 

  20. Gavrichev, K.S., Sharpataya, G.A., Guskov, V.N., et al., Phys. Status Solidi, 2002, vol. 229, no. 1, pp. 133–135.

    Article  CAS  Google Scholar 

  21. Gavrichev, K.S., Guskov, V.N., Greenberg, J.H., et al., Low-Temperature Heat Capacity of ZnTe, J. Chem. Thermodyn., 2002, vol. 34, no. 10, pp. 2041–2047.

    Article  CAS  Google Scholar 

  22. Kelemen, F., Cruceanu, E., and Nicalescu, D., Untersuchung einiger thermischer Eigenschafter der Verbindungen HgSe, HgTe und ZnTe, Phys. Status Solidi, 1965, vol. 11, no. 2, pp. 865–872.

    Article  CAS  Google Scholar 

  23. Pashinkin, A.S., Malkova, A.S., and Mikhailova, M.S., The Heat Capacity of Zinc and Cadmium Chalcogenides (ZnTe, CdSe, and CdTe), Russ. J. Phys. Chem. A, 2002, vol. 76, no. 4, pp. 552–555.

    Google Scholar 

  24. Gavrichev, K.S., Sharpataya, G.A., Guskov, V.N., et al., High-Temperature Heat Capacity and Thermodynamic Functions of Zinc Telluride, Thermochim. Acta, 2002, vol. 381, pp. 133–138.

    Article  CAS  Google Scholar 

  25. Devyatykh, G.G. and Zorin, L.D., Letuchie neorganicheskie gidridy osoboi chistoty (Extrapure Volatile Inorganic Hydrides), Moscow: Nauka, 1974.

    Google Scholar 

  26. Demidenko, A.F., Heat Capacity of CdS, CdSe, and CdTe from 55 to 300 K, Izv. Akad. Nauk SSSR, Neorg. Mater., 1969, vol. 5, no. 2, pp. 252–255.

    CAS  Google Scholar 

  27. Petrova, Zh.K., Heat Capacity of Zinc and Cadmium Chalcogenides from 5 to 300 K, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Minsk: Inst. of Solid-State and Semiconductor Physics, Belarussian Acad. Sci., 1976.

    Google Scholar 

  28. Glazov, V.M., Pashinkin, A.S., and Malkova, A.S., Heat Capacity of Cadmium Selenide from 360 to 760 K, Zh. Fiz. Khim., 1969, vol. 63, no. 1, pp. 38–40.

    Google Scholar 

  29. Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Handbook), Glushko, V.P., Ed., Moscow: VINITI, 1972, issue 6, part 1.

    Google Scholar 

  30. Rusakov, A.P., Heat Capacity, Elastic Constants, and Lattice Dynamics of II–VI Compounds, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow Inst. of Steel and Alloys, 1971.

    Google Scholar 

  31. Sirota, N.N., Govaleshko, N.P., Novikova, V.V., et al., Heat Capacity and Thermodynamic Functions of (CdTe)x(HgTe)1 − x Solid Solutions from 5 to 300 K, Zh. Fiz. Khim., 1990, vol. 64, no. 4, pp. 1126–1129.

    CAS  Google Scholar 

  32. Gambino, M., Vassiliev, V., and Bros, P., Molar Heat Capacities of CdTe, HgTe and CdTe-HgTe Alloys in the Solid State, J. Alloys Compd., 1991, vol. 176, no. 1, pp. 13–24.

    Article  CAS  Google Scholar 

  33. Agarwal, R., Venugopal, V., and Sood, D.D., The Determination of the Enthalpy of Formation and Enthalpy Increment of Cd0.5Te0.5 by Calvet Calorimetry, J. Alloys Compd., 1993, vol. 200, no. 1, pp. 93–98.

    Article  CAS  Google Scholar 

  34. Gul’tyaev, P.V. and Petrov, A.V., Heat Capacity of Some Semiconductors, Fiz. Tverd. Tela (Leningrad), 1959, vol. 1, no. 3, pp. 368–372.

    Google Scholar 

  35. Bogdanov, V.I. and Bezborodova, V.M., Temperature-Dependent Heat Capacity of HgSe, Fiz. Tverd. Tela (Leningrad), 1970, vol. 12, no. 6, pp. 1849–1850.

    CAS  Google Scholar 

  36. Glazov, V.M., Malkova, A.S., Pavlova, L.M., and Pashinkin, A.S., Heat Capacity of Solid Mercury Telluride in the Temperature Range 350–420 K, Russ. J. Phys. Chem. A, 1998, vol. 72, no. 10, pp. 1737–1738.

    Google Scholar 

  37. Markert, W., Nieke, H., and Spiegler, D., Ann. Phys. 1968, vol. 476, no. 7, pp. 387–401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pashinkin.

Additional information

Original Russian Text © A.S. Pashinkin, V.A. Fedorov, M.S. Mikhailova, A.S. Malkova, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 1, pp. 34–39.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashinkin, A.S., Fedorov, V.A., Mikhailova, M.S. et al. Heat capacity of solid AIISe and AIITe above 298 K. Inorg Mater 48, 28–33 (2012). https://doi.org/10.1134/S0020168512010116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512010116

Keywords

Navigation