Skip to main content
Log in

Ultrapurification of archaeological lead

  • Published:
Inorganic Materials Aims and scope

Abstract

Based on purification efficiency calculations for lead distillation, we developed a combined process for the ultrapurification of archaeological lead. We obtained pilot amounts of high-purity archaeological lead and PbO with the following contents of detrimental impurities: U, <2 ppb; Th, <1 ppb; Ni, Cu, Fe, Si, Ti, Mg, Al, Mn, Cr, V, Co, < 0.1 ppm; K, Ca, Zn, Cd, Ag, Sb, < 1 ppm. Lead of such purity can be used in low-background experiments as a protective shield material and in the growth of low-background PbWO4 and PbMoO4 scintillator crystals. From an isotope ratio, we were able to identify the origin of the archaeological lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernabei, R., Windows beyond the Standard Model, AIP Conf. Proc., 2007, vol. 942, pp. 13–18.

    Article  CAS  Google Scholar 

  2. Tretyak, V.I. and Zdesenko, Yu.G., Tables of Double Beta Decay Data, At. Data Nucl. Data Tables, 2002, vol. 80, no. 1, pp. 83–116.

    Article  CAS  Google Scholar 

  3. Vergados, J.D., The Neutrinoless Double Beta Decay from a Modern Perspective, Phys. Rep., 2002, vol. 361, no. 1, pp. 1–56.

    Article  CAS  Google Scholar 

  4. Elliot, S.R. and Engel, J., Double-Beta Decay, J. Phys. G: Nucl. Part. Phys., 2004, vol. 30, pp. 183–215.

    Article  Google Scholar 

  5. Ejiri, H., Double Beta Decays and Neutrino Masses, J. Phys. Soc. Jpn., 2005, vol. 74, pp. 2101–2127.

    Article  CAS  Google Scholar 

  6. Avignone, F.T., Elliott, S.R., and Engel, J., Double Beta Decay, Majorana Neutrinos, and Neutrino Mass, Rev. Mod. Phys., 2008, vol. 80, no. 2, pp. 481–516.

    Article  CAS  Google Scholar 

  7. Arpesella, C., Derbin, A., et al., Measurements of Extremely Low Radioactivity Levels in BOREXINO, Astropart. Phys., 2002, vol. 18, no. 1, pp. 1–25.

    Article  Google Scholar 

  8. Laubenstein, M., Hult, M., Gasparro, J., et al., Underground Measurements of Radioactivity, Appl. Radiat. Isot., 2004, vol. 61, pp. 167–172.

    Article  CAS  Google Scholar 

  9. Danevich, F.A., Scintillators in Particle Astrophysics, Trudy mezhdunarodnoi konferentsii “Inzheneriya stsintillyatsionnykh materialov i radiatsionnye tekhnologii” (ISMART-2008) (Proc. Int. Conf. Scintillation Materials Engineering and Radiation Technologies, ISMART-2008), Kharkov: ISMA, 2009, pp. 54–92.

    Google Scholar 

  10. Alessandrello, A., Cattadori, C., Fiorentini, G., et al., Measurements on Radioactivity of Ancient Roman Lead to Be Used As Shield in Searches for Rare Events, Nucl. Instrum. Methods., Sect. B, 1991, vol. 61, no. 1, pp. 106–117.

    Article  Google Scholar 

  11. Alessandrello, A., Allegretti, F., Brofferio, C., et al., Measurements of Low Radioactive Contaminations in Lead Using Bolometric Detectors, Nucl. Instrum. Methods., Sect. B, 1993, vol. 83, no. 4, pp. 539–544.

    Article  CAS  Google Scholar 

  12. Danevich, F.A., Kim, S.K., Kim, H.J., et al., Ancient Greek Lead Findings in Ukraine, Nucl. Instrum. Methods., Sect. A, 2009, vol. 603, no. 3, pp. 328–332.

    Article  CAS  Google Scholar 

  13. Zdesenko, Yu.G., Kropivyanskii, B.N., Kuts, V.N., et al., Lead Molybdate: A Low-Temperature Scintillator for Detection of 100Mo Neutrinoless Double Beta Decay, Prib. Tekh. Eksp., 1996, no. 3, pp. 53–57.

  14. Danevich, F.A., Georgadze, A.Sh., Kobychev, V.V., et al., Application of PbWO4 Crystal Scintillators in Experiment to Search for 2β Decay of 116Cd, Nucl. Instrum. Methods., Sect. A, 2006, vol. 556, no. 1, pp. 259–265.

    Article  CAS  Google Scholar 

  15. Kovtun, G.P., Kravchenko, A.I., and Shcherban’, A.P., Preparation of High-Purity Gallium, Zinc, Cadmium, and Tellurium for Microelectronic Applications, Tekhnol. Konstr. Elektron. Appar., 2001, no. 3, pp. 6–8.

  16. Kovtun, G.P., Shcherban’, A.P., Solopikhin, D.A., et al., Purification of Cadmium and Lead for Low-Background Scintillators, Proc. I Int. Workshop Radiopure Scintillators for EURECA (RPScint’2008), Kyiv, 2009, pp. 59–63.

  17. Gale, N.H. and Stos-Gale, Z.A., Bronze Age Copper Sources in the Mediterranean: A New Approach, Science, 1982, vol. 216, pp. 11–18.

    Article  CAS  Google Scholar 

  18. Gale, N.H. and Stos-Gale, Z.A., Lead and Silver in the Ancient Aegean, Sci. Am., 1981, vol. 244, pp. 176–192.

    Article  CAS  Google Scholar 

  19. Krogh, T.E., A Low Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determinations, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Kovtun.

Additional information

Original Russian Text © R.S. Boiko, V.D. Virich, F.A. Danevich, T.I. Dovbush, G.P. Kovtun, S.S. Nagornyi, S. Nisi, A.I. Samchuk, D.A. Solopikhin, A.P. Shcherban’, 2011, published in Neorganicheskie Materialy, 2011, Vol. 47, No. 6, pp. 722–726.

Ballast from a Greek ship sunk near the southern coast of Crimea in the Black Sea in the first century BC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boiko, R.S., Virich, V.D., Danevich, F.A. et al. Ultrapurification of archaeological lead. Inorg Mater 47, 645–648 (2011). https://doi.org/10.1134/S0020168511060069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168511060069

Keywords

Navigation