Skip to main content
Log in

Assay methods for 238U, 232Th, and 210Pb in lead and calibration of 210Bi bremsstrahlung emission from lead

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Methods for measuring 238U, 232Th, and 210Pb in refined lead are presented. The 238U and 232Th concentrations are determined using isotope dilution inductively coupled plasma mass spectrometry after anion exchange column separation of dissolved lead samples. The 210Pb concentration is inferred through α-spectroscopy of a daughter isotope, 210Po, after precipitation separation of dissolved lead samples. Subsequent to the 210Po α-spectroscopy measurement, a method for evaluating 210Pb concentrations was developed via measurement of bremsstrahlung radiation from β-decay of a daughter isotope, 210Bi, using a 14-crystal array of high purity germanium detectors. Ten sources of refined lead were assayed and results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Thank you to K. Rielage (Los Alamos National Laboratory) for the description of the sample provided.

  2. The acknowledgements in Mouchel and Wordel [17], state an old lead sample—presumably the “(d) English monument” of Table 3—is “from the roof of Hampton Court”.

References

  1. Alessandrello A, Cattadori C, Fiorentini G, Fiorini E, Gervasio G, Heusser G, Mezzorani G, Pernicka E, Quarati P, Salvi D, Sverzellati P, Zanotti L (1991) Measurements on radioactivity of ancient-roman lead to be used as shield in searches for rare events. Nucl Instrum Methods B 61(1):106–117. doi:10.1016/0168-583x(91)95569-Y

    Article  Google Scholar 

  2. Reyss JL, Schmidt S, Legeleux F, Bonte P (1995) Large, low-background well-type detectors for measurements of environmental-radioactivity. Nucl Instrum Methods A 357(2–3):391–397. doi:10.1016/0168-9002(95)00021-6

    Article  CAS  Google Scholar 

  3. Brodzinski RL, Miley HS, Reeves JH, Avignone FT (1995) Low-background germanium spectrometry—the bottom line 3 years later. J Radioanal Nucl Chem 193(1):61–70. doi:10.1007/Bf02041917

    Article  CAS  Google Scholar 

  4. Hult M, Canet MJM, Kohler M, das Neves J, Johnston PN (2000) Recent developments in ultra low-level gamma-ray spectrometry at IRMM. Appl Radiat Isot 53(1–2):225–229. doi:10.1016/S0969-8043(00)00138-X

    Article  CAS  Google Scholar 

  5. LaFerriere BD, Maiti TC, Arnquist IJ, Hoppe EW (2015) A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry. Nucl Instrum Methods A 775:93–98. doi:10.1016/j.nima.2014.11.052

    Article  CAS  Google Scholar 

  6. Miley SM, Payne RF, Schulte SM, Finn EC (2009) Polonium-lead extractions to determine the best method for the quantification of clean lead used in low-background radiation detectors. J Radioanal Nucl Chem 282(3):869–872. doi:10.1007/s10967-009-0319-9

    Article  CAS  Google Scholar 

  7. Sommerfeld A (1931) The deflection and slowing down of electrons. Ann Phys 11(3):257–330

    Article  CAS  Google Scholar 

  8. Beattie RJD, Byrne J (1971) Angular distributions and energy spectra of internal bremsstrahlung emitted during beta decay of P-32, Y-90, Tl-204 and Bi-210. Nucl Phys A 161(2):650. doi:10.1016/0375-9474(71)90393-9

    Article  CAS  Google Scholar 

  9. Keillor ME, Aalseth CE, Day AR, Fast JE, Hoppe EW, Hyronimus BJ, Hossbach TW, Miley HS, Seifert A, Warren GA (2009) Design and construction of an ultra-low-background 14-crystal germanium array for high efficiency and coincidence measurements. J Radioanal Nucl Chem 282(3):703–708. doi:10.1007/s10967-009-0248-7

    Article  CAS  Google Scholar 

  10. Aalseth CE, Bonicalzi RM, Cantaloub MG, Day AR, Erikson LE, Fast J, Forrester JB, Fuller ES, Glasgow BD, Greenwood LR, Hoppe EW, Hossbach TW, Hyronimus BJ, Keillor ME, Mace EK, McIntyre JI, Merriman JH, Myers AW, Overman CT, Overman NR, Panisko ME, Seifert A, Warren GA, Runkle RC (2012) A shallow underground laboratory for low-background radiation measurements and materials development. Rev Sci Instrum 83(11):113503. doi:10.1063/1.4761923

    Article  CAS  Google Scholar 

  11. Wogman NA, Robertson DE, Perkins RW (1967) A large detector, anticoincidence shielded multidimensional gamma-ray spectrometer. Nucl Instrum Methods 50(1):1–10. doi:10.1016/0029-554x(67)90585-x

    Article  CAS  Google Scholar 

  12. Wogman NA, Perkins RW, Kaye JH (1969) An all sodium iodide anticoincidence shielded multidimensional gamma-ray spectrometer for low-activity samples. Nucl Instrum Methods 74(2):197. doi:10.1016/0029-554x(69)90337-1

    Article  CAS  Google Scholar 

  13. Schwaiger M, Steger F, Schroettner T, Schmitzer C (2002) A ultra low level laboratory for nuclear test ban measurements. Appl Radiat Isot 56(1–2):375–378

    Article  CAS  Google Scholar 

  14. Schulze J, Auer M, Werzi R (2000) Low level radioactivity measurement in support of the CTBTO. Comprehensive Nuclear-Test-Ban Treaty Organization. Appl Radiat Isot 53(1–2):23–30

    Article  CAS  Google Scholar 

  15. Bonicalzi RM, Collar JI, Colaresi J, Fast JE, Fields NE, Fuller ES, Hai M, Hossbach TW, Kos MS, Orrell JL, Overman CT, Reid DJ, VanDevender BA, Wiseman C, Yocum KM (2013) The C-4 dark matter experiment. Nucl Instrum Meth A 712:27–33. doi:10.1016/j.nima.2013.02.012

    Article  CAS  Google Scholar 

  16. Erchinger JL, Aalseth CE, Bernacki BE, Douglas M, Fuller ES, Keillor ME, Morley SM, Mullen CA, Orrell JL, Panisko ME, Warren GA, Williams RO, Wright ME (2015) Development of a low background liquid scintillation counter for a shallow underground laboratory. Appl Radiat Isot 105:209–218. doi:10.1016/j.apradiso.2015.08.027

    Article  CAS  Google Scholar 

  17. Mouchel D, Wordel R (1996) A low-energy HPGe detector dedicated to radioactivity measurements far below environmental levels. Appl Radiat Isot 47(9/10):8. doi:10.1016/S0969-8043(96)00102-9

    Google Scholar 

  18. Avignone FT, Brodzinski RL, Collar JI, Courant H, Garcia E, Guerard CK, Hensley WK, Kirpichnikov IV, Klimenko AA, Morales A, Morales J, Miley HS, Nunez-Lagos R, Osetrov SB, Pogosov VS, Pomansky AA, Puimedon J, Reeves JH, Ruddick K, Saenz C, Salinas A, Sarsa ML, Smolnikov AA, Starostin AS, Tamanyan AG, Umatov VI, Vasiliev SI, Villar JA (1994) The international germanium experiment (IGEX) in 1993. Nucl Phys B 35:354–357. doi:10.1016/0920-5632(94)90275-5

    Article  CAS  Google Scholar 

  19. Attisha M, De Viveiros L, Gaitksell R, Thompson JP (2005) Soudan low background counting facility (SOLO). AIP Conf Proc 785(1):75–78. doi:10.1063/1.2060455

    Article  Google Scholar 

  20. Nachab A, Hubert P (2012) 210Pb activity by detection of bremsstrahlung in 210Bi β-decay. Nucl Instrum Methods Phys Res, Sect B 274:188–190. doi:10.1016/j.nimb.2011.11.020

    Article  CAS  Google Scholar 

  21. Vojtyla P (1996) Fast computer simulations of background of low-level Ge gamma-spectrometers induced by Pb-210/Bi-210 in shielding lead. Nucl Instrum Methods B 117(1–2):189–198. doi:10.1016/0168-583x(96)00275-3

    Article  CAS  Google Scholar 

  22. Deming WE (1943) Statistical adjustment of data. Dover Publications edition, 1985 edn. Wiley, New York

  23. Budjas D, Hampel W, Heisel M, Heusser G, Keillor M, Laubenstein M, Maneschg W, Rugel G, Simgen H, Strecker H (2008) Highly sensitive gamma-spectrometers of GERDA for material screening. In: Proceedings of the XIV International Baksan School “Particles and Cosmology” Baksan Valley, Kabardino-Balkaria, Russia, 16–21 April 2007. INR RAS, Moscow, pp 228–232. arXiv:0812.0723

Download references

Acknowledgments

The three radiochemical assay measurements for 238U, 232Th, and 210Po described in this article were supported by the Ultra Sensitive Nuclear Measurements Initiative, conducted under the Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. In particular, the LDRD project supporting this assay development effort is presented in Ref. [16], which describes the shielding design of a low-background liquid scintillation counting (LSC) system. In that LSC system the projected background from bremsstrahlung from the lead was the second largest background contributor, assuming a 2-inch thick, inner layer of 3 Bq kg−1 lead surrounded by 60 Bq kg−1 outer lead. From the survey of the ten lots of lead provided by this assay development effort, it was decided to employ a lead shield for the LSC system using three layers of lead having ~2 Bq kg−1 (purchased separately), ~30 Bq kg−1 (lots for samples #2 and #4), and ~70 Bq kg−1 (lot for sample #1), from the inner most layer to the outer most layer, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Orrell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orrell, J.L., Aalseth, C.E., Arnquist, I.J. et al. Assay methods for 238U, 232Th, and 210Pb in lead and calibration of 210Bi bremsstrahlung emission from lead. J Radioanal Nucl Chem 309, 1271–1281 (2016). https://doi.org/10.1007/s10967-016-4732-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4732-6

Keywords

Navigation