Skip to main content
Log in

A simple approach for the synthesis of Co3O4 nanocrystals

  • Published:
Inorganic Materials Aims and scope

Abstract

By using Co2+ and Co3+ salts, and freshly extracted ovalbumin, Co3O4 nanocrystals have been synthesized successfully. The pH of the solution was self-regulated for the hydrolysis of metal ions as the ovalbumin-water mixture was highly basic. Water soluble ovalbumin proteins served as a perfect matrix for entrapment of Co2+ and Co3+ ions thus forming a gel. Upon heat treatment, the dried gel precursor decomposed into nanocrystalline Co3O4. The crystallite size obtained by XRD line profile fitting was 45 ± 8 nm and particle size estimated from the SEM was in the range 20 nm-2 μm. EPR results show a very good fit to literature reports for nanocrystals in the size range of 8–17 nm. Even though the overall particle size is quite large and its distribution is quite wide EPR results confirm nanocrystalline nature of the particles obtained. Presented route is simple, cost effective, and environmentally friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busca, G., Trifiro, F., and Vaccari, A., Characterization and Catalytic Activity of Cobalt-Chromium Mixed Oxides, Langmuir, 1990, vol. 6, no. 9, pp. 1440–1447.

    Article  CAS  Google Scholar 

  2. Poizot, P., Laruelle, S., Grugeon, S., et al., Nano-Sized Transition-Metal Oxides As Negative-Electrode Materials for Lithium-Ion Batteries, Nature, 2000, vol. 407, no. 6803, pp. 496–499.

    Article  CAS  Google Scholar 

  3. Yuan, Z., Huang, F., Feng, C., et al., Synthesis and Electrochemical Performance of Nanosized Co3O4, Mater. Chem. Phys., 2003, vol. 79, no. 1, pp. 1–4.

    Article  CAS  Google Scholar 

  4. Kamata, K., Lu, Y., and Xia, Y., Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores, J. Am. Chem. Soc., 2003, vol. 125, no. 9, pp. 2384–2385.

    Article  CAS  Google Scholar 

  5. Wang, Y., Cai, L., and Xia, Y., Monodisperse Spherical Colloids of Pb and Their Use As Chemical Templates to Produce Hollow Particles, Adv. Mater., 2005, vol. 17, no. 4, pp. 473–477.

    Article  CAS  Google Scholar 

  6. Mergler, Y.J., Hoebink, J., and Nieuwenhuys, B.E., CO Oxidation over a Pt/CoOx/SiO2 Catalyst: A Study Using Temporal Analysis of Products, J. Catal., 1997, vol. 167, no. 2, pp. 305–313.

    Article  CAS  Google Scholar 

  7. Hamada, H., Kintaichi, Y., Inaba, M., et al., Role of Supported Metals in the Selective Reduction of Nitrogen Monoxide with Hydrocarbons over Metal/Alumina Catalysts, Catal. Today, 1996, vol. 29, nos. 1–4, pp. 53–57.

    Article  CAS  Google Scholar 

  8. Sinha, A.S.K. and Shankar, V., Characterization and Activity of Cobalt Oxide Catalysts for Total Oxidation of Hydrocarbons, Chem. Eng. J., 1993, vol. 52, no. 3, pp. 115–120.

    Article  CAS  Google Scholar 

  9. Mocuta, C., Barbier, A., and Renaud, G., CoO(111) Surface Study by Surface X-Ray Diffraction, Appl. Surf. Sci., 2002, vols. 162–163, pp. 56–61.

    Google Scholar 

  10. Xu, R. and Zeng, H.C., Mechanistic Investigation on Salt-Mediated Formation of Free-Standing Co3O4 Nanocubes at 95°C, J. Phys. Chem. B, 2003, vol. 107, no. 4, pp. 926–930.

    Article  CAS  Google Scholar 

  11. Lakshmi, B.B., Patrissi, C.J., and Martin, C.R., Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures, Chem. Mater., 1997, vol. 9, no. 11, pp. 2544–2550.

    Article  CAS  Google Scholar 

  12. Svegl, F., Orel, B., Grabec-Svegl, I., et al., Characterization of Spinel Co3O4 and Li-Doped Co3O4 Thin Film Electrocatalysts Prepared by the Sol-Gel Route, Electrochim. Acta, 2000, vol. 45, nos. 25–26, pp. 4359–4371.

    CAS  Google Scholar 

  13. Baydi, M.E., Poillerat, G., Rehspringer, J.L., et al., A Sol-Gel Route for the Preparation of Co3O4 Catalyst for Oxygen Electrocatalysis in Alkaline Medium, J. Solid State Chem., 1994, vol. 109, no. 2, pp. 281–288.

    Article  Google Scholar 

  14. Ni, Y.H., Ge, X.W., Zhang, Z.C., et al., A Simple Reduction-Oxidation Route to Prepare Co3O4 Nanocrystals, Mater. Res. Bull., 2001, vol. 36, nos. 13–14, pp. 2383–2387.

    Article  CAS  Google Scholar 

  15. Sakamoto, S., Yoshinaka, M., Hirota, K., and Yamaguchi, O., Fabrication. Mechanical Properties, and Electrical Conductivity of Co3O4 Ceramics, J. Am. Ceram. Soc., 1997, vol. 80, no. 1, pp. 267–268.

    Article  CAS  Google Scholar 

  16. Burriel, M., Garcia, G., Santiso, J., et al., Growth Kinetics, Composition, and Morphology of Co3O4 Thin Films Prepared by Pulsed Liquid-Injection MOCVD, Chem. Vap. Deposition, 2005, vol. 11, no. 2, pp. 106–111.

    Article  CAS  Google Scholar 

  17. Singh, R.N., Koenig, J.F., Poillerat, G., and Chartier, P., Electrochemical Studies on Protective Thin Co3O4 and NiCo2O4 Films Prepared on Titanium by Spray Pyrolysis for Oxygen Evolution, J. Electrochem. Soc., 1990, vol. 137, no. 5, pp. 1408–1413.

    Article  CAS  Google Scholar 

  18. Mine, Y., Recent Advances in the Understanding of Egg White Protein Functionality, Trends Food Sci. Technol., 1995, vol. 6, no. 7, pp. 225–232.

    Article  CAS  Google Scholar 

  19. Lyckfeldt, O., Brandt, J., and Lesca, S., Protein Forming—A Novel Shaping Technique for Ceramics, J. Eur. Ceram. Soc., 2000, vol. 20, nos. 14–15, pp. 2551–2559.

    Article  CAS  Google Scholar 

  20. Dhara, S. and Bhargava, P., Egg White As an Environmentally Friendly Low-Cost Binder for Gelcasting of Ceramics, J. Am. Ceram. Soc., 2001, vol. 84, no. 12, pp. 3048–3050.

    Article  CAS  Google Scholar 

  21. Dhara, S. and Bhargava, P., A Simple Direct Casting Route to Ceramic Foams, J. Am. Ceram. Soc., 2003, vol. 86, no. 10, pp. 1645–1650.

    Article  CAS  Google Scholar 

  22. Maensiri, S., Masingboon, C., Boonchom, B., and Seraphin, S., A Simple Route to Synthesize Nickel Ferrite (NiFe2O4) Nanoparticles Using Egg White, Scr. Mater., 2007, vol. 56, no. 9, pp. 797–800.

    Article  CAS  Google Scholar 

  23. Dhara, S. and Bhargava, P., Influence of Nature and Amount of Dispersant on Rheology of Aged Aqueous Alumina Gelcasting Slurries, J. Am. Ceram. Soc., 2005, vol. 88, no. 3, pp. 547–552.

    Article  CAS  Google Scholar 

  24. Sri Devi Kumari, T., Kannan, R., and Prem Kumar, T., Synthesis of LiMn2O4 from a Gelled Ovalbumin Matrix, Ceram. Int., 2008, vol. 35, no. 4, pp. 1565–1568.

    Article  Google Scholar 

  25. Durmus, Z., Baykal, A., Kavas, H., et al., Ovalbumin Mediated Synthesis of Mn3O4, Polyhedron, 2009, doi: 10.1016/j.poly.2009.03.026.

  26. Wejrzanowski, T., Pielaszek, R., Opalinska, A., et al., Quantitative Methods for Nanopowders Characterization, Appl. Surf. Sci., 2006, vol. 253, no. 1, pp. 204–208.

    Article  CAS  Google Scholar 

  27. Pielaszek, R., Analytical Expression for Diffraction Line Profile for Polydispersive Powders, Proc. XIX Conf. Appl. Crystallography, Krakow, 2003, vol. 43.

  28. Kurtulus, F. and Güler, H., A Simple Microwave-Assisted Route to Prepare Black Cobalt Co3O4, Inorg. Mater, 2005, vol. 41, no. 5, pp. 564–565.

    Article  Google Scholar 

  29. Ozkaya, T., Baykal, A., Koseolu, Y., and Kavas, H., Synthesis of Co3O4 Nanoparticles by Oxidation-Reduction Method and Its Magnetic Characterization, Cent. Eur. J. Chem., 2009, doi: 10.2478/s 11532-009-0012-4.

  30. Ozkaya, T., Baykal, A., Toprak, M.S., et al., Reflux Synthesis of Co3O4 Nanoparticles and Its Magnetic Characterization, J. Magn. Magn. Mater., 2009, vol. 321, pp. 2145–2149.

    Article  CAS  Google Scholar 

  31. Ozkaya, T., Synthesis and Characterization of M3O4 (M: Fe, Mn, Co) Magnetic Nanoparticles, M. Sci. Thesis, Istanbul: Fatih Univ., 2008.

    Google Scholar 

  32. Malecki, A., Tareen, J., Doumerc, J., et al., Kinetics of Thermal Decomposition of Co3O4 Powder and Single Crystals, J. Solid State Chem., 1985, vol. 56, no. 1, pp. 49–57.

    Article  CAS  Google Scholar 

  33. Dutta, P., Seehra, M.S., Thota, S., and Kumar, J., A Comparative Study of the Magnetic Properties of Bulk and Nanocrystalline Co3O4, J. Phys.: Condens. Matter, 2008, vol. 20, no. 1, pp. 015218–015225.

    Article  Google Scholar 

  34. Venkateswara Rao, K. and Sunandana, C.S., Co3O4 Nanoparticles by Chemical Combustion: Effect of Fuel to Oxidizer Ratio on Structure, Microstructure and EPR, Solid State Commun., 2008, vol. 148, nos. 1–2, pp. 32–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadov, T.O., Durmus, Z., Baykal, A. et al. A simple approach for the synthesis of Co3O4 nanocrystals. Inorg Mater 47, 426–430 (2011). https://doi.org/10.1134/S0020168511040017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168511040017

Keywords

Navigation