Skip to main content
Log in

Heat capacity and thermodynamic functions of LaVO4 and LuVO4 from 7 to 345 K

  • Published:
Inorganic Materials Aims and scope

Abstract

The heat capacities of lanthanum and lutetium orthovanadates have been measured at temperatures from 7 to 345 K using an adiabatic calorimeter. No anomalies have been detected in the heat capacity data. The thermodynamic functions (C 0 p (T), S 0(T), and H 0(T) − H 0(0)) of the two compounds have been calculated in the temperature range studied, and their Debye characteristic temperatures have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zelikman, A.N. and Korshunov, B.G., Metallurgiya redkikh i tsvetnykh metallov (Metallurgy of Rare and Nonferrous Metals), Moscow: Metallurgiya, 1991.

    Google Scholar 

  2. Fotiev, A.A., Shul’gin, B.V., Moskvin, A.S., and Gavrilov, F.F., Vanadievye kristallofosfory (Crystalline Vanadium Phosphors), Moscow: Nauka, 1976.

    Google Scholar 

  3. Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., and Komissarova, L.N., Heat Capacity and Thermodynamic Functions of Rare Earth Orthophosphates and Orthovanadates, 20th Int. Conf. on Chemical Thermodynamics, Warsaw, 2008, p. 171.

  4. Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., et al., Refined Heat Capacity of LaPO4 in the Temperature Range 0–1600 K, Thermochim. Acta, 2008, vol. 474, pp. 47–51.

    Article  CAS  Google Scholar 

  5. Gavrichev, K.S., Smirnova, N.N., Gurevich, V.M., et al., Heat Capacity and Thermodynamic Functions of LuPO4 in the Range 0–320 K, Thermochim. Acta, 2006, vol. 448, pp. 63–65.

    Article  CAS  Google Scholar 

  6. Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., et al., Heat Capacity and Thermodynamic Functions of Pretulite, ScPO4, in the Temperature Range 0–1600 K, Geokhimiya, 2010 (in press).

  7. Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., et al., Heat Capacity and Thermodynamic Functions of EuPO4 in the Range 0–1600 K, Zh. Fiz. Khim., 2009, vol. 83, no. 6, pp. 1032–1038.

    Google Scholar 

  8. Dorogova, M., Navrotsky, A., and Boather, L.A., Enthalpy of Formation of Rare Earth Orthovanadates REVO4, J. Solid State Chem., 2007, vol. 180, pp. 847–851.

    Article  CAS  Google Scholar 

  9. Zielinski, S. and Skupin, W., Determination des chaleurs de formation des orthovanadates de certains elements des terres rares par la methode d’analyse thermique differentielle, J. Therm. Anal., 1980, vol. 19, pp. 61–67.

    Article  CAS  Google Scholar 

  10. Schmidt, M., Ramlaw, R., Schnelle, W., et al., Zum Chemishen Transport von Seltenerdvanadaten(V), Z. Anorg. Chem., 2005, vol. 631, pp. 284–292.

    Article  CAS  Google Scholar 

  11. Rykova, G.A. and Skorikov, V.M., Enthalpy of Formation and Heat Capacity of Rare-Earth Orthovanadates, Zh. Neorg. Khim., 1983, vol. 28, no. 5, pp. 1141–1144.

    CAS  Google Scholar 

  12. Yokogawa, H., Sakaiu, N., Kavada, T., and Dokiya, M., Chemical Potential Diagram for Rare Earth-Transition Metal-Oxygen Systems: I. Ln-V-O and Ln-Mn-O Systems, J. Am. Ceram. Soc., 1990, vol. 73, pp. 649–658.

    Article  Google Scholar 

  13. Sirota, N.N., Novikov, A.V., Novikova, V.V., and Novikov, V.V., Heat Capacity and Thermodynamic Functions of the RVO4 (R = Pr, Nd, Sm, Eu, Gd, Tb) Rare-Earth Orthovanadates, Zh. Fiz. Khim., 1990, vol. 64, no. 7, pp. 1750–1755.

    CAS  Google Scholar 

  14. Rice, C.E. and Robinson, W.R., Lanthanum Orthovanadate, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1976, vol. 32, pp. 2232–2233.

    Article  Google Scholar 

  15. Brusset, H., Madaule-Aubry, F., Blanck, B., et al., Etude des oxides mixtes de lanthanides et de vanadium(V), Can. J. Chem., 1971, vol. 49, pp. 3700–3707.

    Article  CAS  Google Scholar 

  16. Chakoumakos, B.C., Abraham, M.M., and Boather, L.A., Crystal Structure Refinements of Zircon-Type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu), Solid State Chem., 1994, vol. 109, p. 197.

    Article  CAS  Google Scholar 

  17. Milligan, W.O. and Vernon, L.W., Crystal Structure of Heavy Metal Orthovanadates, J. Phys. Chem., 1952, vol. 56, pp. 145–147.

    Article  CAS  Google Scholar 

  18. Varushchenko, R.M., Druzhinina, A.I., and Sorkin, E.L., Low-Temperature Heat Capacity of 1-Bromoperfluorooctane, J. Chem. Thermodyn., 1997, vol. 29, pp. 623–637.

    Article  CAS  Google Scholar 

  19. http://www.physics.nist.gov/PhysRefData/Compositions.

  20. Iorish, V.S. and Tolmach, P.I., Procedure and Program for Spline Fitting Low-Temperature Heat Capacity Data, Zh. Fiz. Khim., 1986, vol. 60, no. 10, pp. 2583–2587.

    CAS  Google Scholar 

  21. Shebershneva, O.V., A Fractal Model for Low-Temperature Heat Capacity of Inorganic Solids, Cand. Sci. (Chem.) Dissertation, Moscow: Kurnakov Inst. of General and Inorganic Chemistry, Russ. Acad. Sci., 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ryumin.

Additional information

Original Russian Text © K.S. Gavrichev, M.A. Ryumin, A.V. Tyurin, L.N. Komissarova, 2010, published in Neorganicheskie Materialy, 2010, Vol. 46, No. 7, pp. 867–874.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V. et al. Heat capacity and thermodynamic functions of LaVO4 and LuVO4 from 7 to 345 K. Inorg Mater 46, 776–783 (2010). https://doi.org/10.1134/S0020168510070162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168510070162

Keywords

Navigation