Skip to main content
Log in

Effect of MnO2 on the electrical conductivity of ZrO2

  • Published:
Inorganic Materials Aims and scope

Abstract

Electrical conductivity of ZrO2 doped with MnO2 has been measured at various temperatures for different molar ratios. The conductivity increases due to hopping of oxygen into neighboring vacancies, created by doping. Increase in temperature increases the rate of hopping, which results in the rise in conductivity and after attaining a maximum the conductivity, decrease due to collapse of the fluorite framework. All compositions show phase transition in ZrO2 from monoclinic to tetragonal at 746 K. The XRD, DTA, and FT-IR studies were carried out for confirming the doping effect and transition in ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B.C.H., Survey of Materials Selection for Ceramic Fuel Cells: II. Cathodes and Anodes, Solid State Ionics, 1996, vols. 86–88, p. 1223.

    Article  Google Scholar 

  2. Boivin, J.C. and Mairesse, G., Recent Material Developments in Fast Oxide Ion Conductors, Chem. Mater., 1998, vol. 10, p. 2870.

    Article  CAS  Google Scholar 

  3. Doshi, R., Routbort, J.L., and Alcock, C.B., Diffusion in Mixed Conducting Oxides: A Review, Def. Diff. Forum, 1996, vol. 127, p. 39.

    Article  Google Scholar 

  4. Gellings, P.J. and Bouwmeester, H.J.M., Ion and Mixed Conducting Oxides as Catalysts, Catal. Today, 1992, vol. 1, pp. 1–101.

    Article  Google Scholar 

  5. Solid State Electrochemistry, Bruee, P.G., Ed., Cambridge: CUP, 1997.

    Google Scholar 

  6. Diffusion in Crystalline Solids, Murch, G.E., and Nowick, A.S., Eds., New York: Academic, 1984.

    Google Scholar 

  7. Saiful Islam M., Ionic Transport in ABO3 Perovskite Oxides: A Computer Modelling Tour, J. Mater. Chem., 2000, vol. 10, pp. 1027–1038.

    Article  Google Scholar 

  8. Kilner, J.A., Fast Oxygen Transport in Acceptor Doped Oxides, Solid State Ionics, 2000, vol. 129, pp. 13–23.

    Article  CAS  Google Scholar 

  9. Kahlert, H., Fery, F., Boysen, H., and Lassak, K., Defect Structure and Diffuse Scattering of ZrO2 Single Crystals at Elevated Temperatures and Simultaneously Applied Electric Field, J. Appl. Crystallogr., 1995, vol. 28, pp. 812–819.

    Article  CAS  Google Scholar 

  10. Haines, J., Leger, J.M., and Atout, A., Crystal Structure and Equation of State of Cotunnite-Type Zirconia, J. Am. Ceram. Soc., 1995, vol. 78, pp. 445–448.

    Article  CAS  Google Scholar 

  11. Dravid, V.P., Ravikumar, V., Notis, M.R., et al., Stabilization of Cubic Zircoma with Manganese Oxide, J. Am. Ceram Soc., 1994, vol. 77, no. 10, pp. 2758–2762.

    Article  CAS  Google Scholar 

  12. Bondars, B., Heidemane, G., Grabis, J., et al., Powder Diffraction Investigation of Plasma Sprayed Zirconia, J. Mater. Sci., 1995, vol. 30, pp. 1621–1625.

    Article  CAS  Google Scholar 

  13. Mukherjee, G.D., Vaidya, S.N., and Karunakaran, C., High Pressure and High Temperature Studies on Manganese Oxide, Phase Transitions, 2002, vol. 75, no. 6, pp. 557–566.

    Article  CAS  Google Scholar 

  14. Huang Peng-Nain and Secco, E.A., Tl+ Ion Conductivity in RbxTl(1−x)I for 0 ≤ x ≤ 0.10, Coexistence of Mixed Phases, and Phase Stabilization, J. Solid State Chem., 1993, vol. 103, p. 314.

    Article  CAS  Google Scholar 

  15. Nair, S.M., Yahya, A.I., and Ahmad Afaq, Ion Conduction in the Ag2HgI4-Cu2HgI4 Systems Doped with Cd2+, K+, and Na+, J. Solid State Chem., 1996, vol. 122, p. 349.

    Article  CAS  Google Scholar 

  16. Kumari, M.S. and Secco, E.A., Phase Transformation Studies on Pure and K-Doped Na2SO4. Can. J. Chem., 1978, vol. 56, p. 2616.

    Article  Google Scholar 

  17. Kumari, M.S. and Secco, E.A., Order-Disorder Transitions: Solid State Kinetics, Thermal Analyses, X-ray Diffraction, and Electrical Conductivity Studies in the Ag2SO4-K2SO4, Can. J. Chem., 1985, vol. 63, p. 324.

    Article  CAS  Google Scholar 

  18. Srinivasan, R., Rice, L., and Davis, B.H., Critical Particle Size and Phase Transformation in Zirconia: Transmission Electron Microscopy and X-ray Diffraction Studies, J. Am. Ceram. Soc., 1990, vol. 73, p. 3528.

    Article  CAS  Google Scholar 

  19. Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, New York: Wiley, 1962, p. 681.

    Google Scholar 

  20. Bondioli, F., Leonelli, C., and Manfredini, T., Microwave-Hydrothermal Synthesis and Hyperfine Characterization of Praseodymium-Doped Nanometric Zirconia Powders, J. Am. Ceram. Soc., 2005, vol. 88, p. 633.

    Article  CAS  Google Scholar 

  21. Gao, L., Liu, Q., Hong, J.S., Miyamoto, H., et al., Phase Transformation in the Al2O3-ZrO2 System, J. Mater. Sci., 1998, vol. 33, p. 1399.

    Article  CAS  Google Scholar 

  22. Powder Diffraction File, Swarthmore: Joint Committee on Powder Diffraction Standards, cards 37-1484, 24-1164.

  23. Powder Diffraction File, Swarthmore: Joint Committee on Powder Diffraction Standards, card 10-69.

  24. Fangxin, L., Jinlong, Y., and Tianpeng, Z., Raman and Fourier-Transform Infrared Photoacoustic Spectra of Granular ZrO2, Phys. Rev. B: Condens. Matter, 1997, vol. 55, p. 8847.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beg, S., Sarita & Varshney, P. Effect of MnO2 on the electrical conductivity of ZrO2 . Inorg Mater 42, 1083–1087 (2006). https://doi.org/10.1134/S0020168506100062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168506100062

Keywords

Navigation