Skip to main content
Log in

Luminescence of ZnO nanorods grown by chemical vapor deposition on (111) Si substrates

  • Published:
Inorganic Materials Aims and scope

Abstract

ZnO nanorods have been grown on (111) Si substrates by chemical vapor deposition in a horizontal reactor, with no catalyst. The nanorods grown far from the outlet end of the reactor are larger in size, have a higher structural perfection, and exhibit more efficient room-temperature edge luminescence in comparison with the nanorods grown at the outlet end. The low-temperature cathodoluminescence spectrum of the nanorods also depends on their position in the reactor during growth, which is interpreted in terms of the density of native defects. The nanorods exhibit room-temperature stimulated emission in the excitonic spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgobiani, A.N., Gruzintsev, A.N., Yakimov, E.E., et al., Spontaneous and Stimulated UV Luminescence of ZnO at 77 K, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 2005, vol. 39, no. 6, pp. 692–696.

    Google Scholar 

  2. Piller, H., Hauschild, R., Zeller, J., et al., Temperature-Dependent Luminescence Dynamics in ZnO Nanorods, J. Lumin., 2005, vol. 112, pp. 173–176.

    Article  Google Scholar 

  3. Huang, M., Mao, S., Feick, H., et al., Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 2001, vol. 292, pp. 1897–1899.

    Article  CAS  Google Scholar 

  4. Gruzintsev, A.N., Volkov, V.T., Barthou, C., and Benalloul, P., Stimulated Emission from Si-SiO2-ZnO Thin Film Nanoresonators Obtained by Magnetron Sputtering Method, Thin Solid Films, 2004, vol. 459, pp. 262–268.

    Article  CAS  Google Scholar 

  5. Gruzintsev, A.N., Volkov, V.T., Dubonos, S.V., et al., Luminescent Properties of Cylindrical ZnO Microresonators, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 2004, vol. 38, no. 12, pp. 1473–1476.

    Google Scholar 

  6. Qui, Z., Wong, K.S., Wu, M., et al., Microcavity Lasing Behavior of Oriented Hexagonal ZnO Nanowhiskers Grown by Hydrothermal Oxidation, Appl. Phys. Lett., 2004, vol. 84, no. 15, pp. 2739–2742.

    Article  Google Scholar 

  7. Zhang, B.P., Binh, N.T., Segawa, Y., et al., Photoluminescence Study of ZnO Nanorods Epitaxially Grown on Sapphire (1120) Substrates, Appl. Phys. Lett., 2004, vol. 84, no. 4, pp. 586–589.

    Article  CAS  Google Scholar 

  8. Gruzintsev, A.N., Volkov, V.T., Khodos, I.I., et al., Luminescent Properties of ZnO Films Doped with Group I Acceptors (Cu, Ag, Au), Mikroelektronika, 2002, vol. 31, no. 3, pp. 234–240.

    Google Scholar 

  9. Gruzintsev, A.N., Volkov, V.T., and Yakimov, E.E., Photoelectric Properties of ZnO Films Doped with Cu and Ag Acceptors, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 2003, vol. 37, no. 3, pp. 275–278.

    Google Scholar 

  10. Zhao, Q.X., Willander, M., Morjan, R.E., et al., Optical Recombination of ZnO Nanowires Grown on Sapphire and Si Substrate, Appl. Phys. Lett., 2003, vol. 83, no. 1, pp. 165–168.

    Article  CAS  Google Scholar 

  11. Zeuner, A., Alves, H., Hofmann, D.M., et al., Optical Properties of Nitrogen Acceptor in Epitaxial ZnO, Phys. Status Solidi B, 2002, vol. 234, no. 3, pp. R7–R9.

    Article  CAS  Google Scholar 

  12. Park, W.I., Jun, Y.H., Jung, S.W., and Yi, G.C., Excitonic Emission Observed in ZnO Single Crystal Nanorods, Appl. Phys. Lett., 2003, vol. 82, no. 6, pp. 964–966.

    Article  CAS  Google Scholar 

  13. Hwang, J.H., Kim, H.S., Lim, J.H., et al., Study of the Photoluminescence of Phosphorus-Doped p-Type ZnO Thin Films Grown by Radio-Frequency Magnetron Sputtering, Appl. Phys. Lett., 2005, vol. 86, pp. 151917–151920.

    Google Scholar 

  14. Xiang Liu, Xiaohua Wu, Hui Cao, and Chang, R.P.H., Growth Mechanism and Properties of ZnO Nanorods Synthesized by Plasma-Enhanced Chemical Vapor Deposition, J. Appl. Phys., 2004, vol. 95, pp. 3141–3147.

    Article  CAS  Google Scholar 

  15. Vanheusden, K., Seager, C.H., Warren, W.L., et al., Green Photoluminescence Efficiency and Free-Carrier Density in ZnO Phosphor Powders Prepared by Spray Pyrolysis, J. Lumin., 1997, vol. 75, pp. 11–16.

    Article  CAS  Google Scholar 

  16. Nikitenko, V.A., Mukhin, S.V., and Pykanov, I.V., Effect of Lithium on the Optical and Transport Properties of Zinc Oxide, V Belorussko-Rossiiskii seminar “Poluprovodnikovye lazery i sistemy na ikh osnove” (V Belarus-Russian Seminar on Semiconductor Lasers and Related Systems), Minsk, 2005, pp. 111–114.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Georgobiani, A.N. Gruzintsev, V.I. Kozlovskii, Z.I. Makovei, A.N. Red’kin, Ya.K. Skasyrskii, 2006, published in Neorganicheskie Materialy, 2006, Vol. 42, No. 7, pp. 830–835.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgobiani, A.N., Gruzintsev, A.N., Kozlovskii, V.I. et al. Luminescence of ZnO nanorods grown by chemical vapor deposition on (111) Si substrates. Inorg Mater 42, 750–755 (2006). https://doi.org/10.1134/S0020168506070119

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168506070119

Keywords

Navigation