Skip to main content
Log in

Effect of Si Growth Temperature on Fabrication of Si-ZnO Coaxial Nanorod Heterostructure on (100) Si Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The realization and application of optoelectronics, photonics, and sensing, such as in solar diode sensors and photodiodes, which are potentially useful from ultraviolet to infrared light sensing, is dramatically advanced when ZnO is integrated into semiconductor nanostructures, especially when compatible with mature silicon technology. Here, we compare and analyze the fundamental features of the Si-ZnO coaxial nanorod heterostructures (Si@ZnO NRs) grown on semi-insulating (100)-oriented Si substrates at growing temperatures of 500°C, 600°C, 650°C, and 700°C of the Si layer for device applications. ZnO NRs were grown by a vapor phase transport, and Si layers were made by rapid thermal chemical vapor deposition. X-ray diffraction, field emission scanning electron microscopy (FESEM), energy-dispersive x-ray spectroscopy, and Raman experiments showed that ZnO NRs were single crystals with a würtzite structure, while the Si layer was polysilicon with a zincblende structure. Furthermore, FESEM revealed that Si shell thickness of the Si@ZnO NRs increases with increasing growing temperatures of Si from 500°C to 700°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Jung, W.I. Park, G.C. Yi, and M. Kim, Adv. Mater. 15, 1358 (2003)

    Article  Google Scholar 

  2. C.H. Lee, J.K. Yoo, Y.J. Doh, and G.C. Yi, Appl. Phys. Lett. 94, 043504 (2009)

    Article  Google Scholar 

  3. L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber, Nature 420, 57 (2002)

    Article  Google Scholar 

  4. J. Hu, Y. Bando, Z. Liu, T. Sekiguchi, D. Goldberg, and J. Zhan, J. Am. Chem. Soc. 125, 11306 (2003)

    Article  Google Scholar 

  5. S.J. An, W.I. Park, G.C. Yi, Y.J. Kim, H.B. Kang, and M.Y. Kim, Appl. Phys. Lett. 84, 3612 (2004)

    Article  Google Scholar 

  6. Y.J. Hong, J.M. Jeon, M. Kim, S.R. Jeon, K.H. Park, and G.C. Yi, New J. Phys. 11, 125021 (2009)

    Article  Google Scholar 

  7. W.I. Park, J.K. Yoo, D.W. Kim, G.C. Yi, and M. Kim, J. Phys. Chem. B Lett. 110, 1516 (2006)

    Article  Google Scholar 

  8. W.I. Park, G.C. Yi, M.Y. Lim, and S.J. Pennycook, Adv. Mater. 15, 526 (2003)

    Article  Google Scholar 

  9. X.Q. Meng, H. Peng, Y.Q. Gai, and J. Li, J. Phys. Chem. C 114, 1467 (2010)

    Article  Google Scholar 

  10. K.Q. Peng, X. Wang, X.L. Wu, and S.T. Lee, Nano Lett. 9, 3704 (2009)

    Article  Google Scholar 

  11. Y. Cui, Q.Q. Wei, H.K. Park, and C.M. Lieber, Science 293, 1289 (2001)

    Article  Google Scholar 

  12. R.R. He and P.D. Yang, Nat. Nanotechnol. 1, 42 (2006)

    Article  Google Scholar 

  13. Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, and C.M. Lieber, Science 294, 1313 (2001)

  14. J.S. Jie, W.J. Zhang, K.Q. Peng, G.D. Yuan, C.S. Lee, and S.T. Lee, Adv. Funct. Mater. 8, 3251 (2008)

    Article  Google Scholar 

  15. X. Zhang, X. Zhang, X. Zhang, Y. Zhang, L. Bian, Y. Wu, C. Xie, Y. Han, Y. Wang, P. Gao, L. Wang, and J.S. Jie, J. Mater. Chem. 22, 22873 (2012)

  16. D. Ma, C.S. Lee, F.C. Au, S.Y. Tong, and S.T. Lee, Science 299, l874 (2003)

    Article  Google Scholar 

  17. Y. Wu, J. Xiang, C. Yang, W. Lu, and C.M. Lieber, Nature 430, 6l (2004)

    Google Scholar 

  18. Y. Wu, R. Fan, and P.D. Yang, Nano Lett. 2, 83 (2002)

    Article  Google Scholar 

  19. C. Wang, J. Wang, Q. Li, and G.C. Yi, Adv. Funct. Mater. 75, 1471 (2005)

    Article  Google Scholar 

  20. H.S. Song, W.J. Zhang, C. Cheng, Y.B. Tang, L.B. Luo, X. Chen, C.Y. Luan, X.M. Meng, J.A. Zapien, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Cryst. Growth Design 11, 147 (2011)

    Article  Google Scholar 

  21. A.E. Gada, M.W.G. Hoffmanna, F. Hernandez-Ramirezb, J.D. Pradesb, H. Shena, and S. Mathura, Mater. Chem. Phys. 135, 618 (2012)

    Article  Google Scholar 

  22. A.E. Gad, M. Hoffmann, F. Hernandez-Ramirez, J.D. Prades, H. Shen, and S. Mathur, Procedia Eng. 47, 1279 (2012)

    Article  Google Scholar 

  23. H.D. Cho, H.Y. Cho, D.W. Kwak, T.W. Kang, and I.T. Yoon, J. Cryst. Growth 437, 26 (2016)

    Article  Google Scholar 

  24. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  25. K.A. Alim, V.A. Fonoberov, M. Shamsa, and A.A. Balandin, J. Appl. Phys. 97, 124313 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Im Taek Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, I.T., Cho, H.D., Cho, H.Y. et al. Effect of Si Growth Temperature on Fabrication of Si-ZnO Coaxial Nanorod Heterostructure on (100) Si Substrate. J. Electron. Mater. 46, 4119–4125 (2017). https://doi.org/10.1007/s11664-017-5317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5317-z

Keywords

Navigation