Skip to main content
Log in

High-Speed Cobalt Film Fracture under the Action of Loads Created by a Picosecond Laser Pulse

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The movement of the rear free surface of submicron cobalt film samples exposed to picosecond laser pulses with different energy densities was studied experimentally. The displacement of the free rear surface of the sample determined in the picosecond range in single-pulse mode using spectral interferometry. Data were obtained on the spall strength cobalt in a condensed state for a strain rate of ~109 s1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Ashitkov, S.I., Agranat, M.B., Kanel’, G.I., Komarov, P.S., and Fortov, V.E., JETP Lett., 2010, vol. 92, no. 8, p. 516.

    Article  ADS  CAS  Google Scholar 

  2. Whitley, V.H., McGrane, S.D., Eakins, D.E., Bolme, C.A., Moore, D.S., and Bingert, J.F., Appl. Phys., 2011, vol. 109, no. 1, p. 013505.

    Article  Google Scholar 

  3. Crowhurst, J.C., Armstrong, M.R., Knight, K.B., Zaug, J.M., and Behymer, E.M., Phys. Rev. Lett., 2011, vol. 107, no. 14, p. 144302.

    Article  ADS  PubMed  Google Scholar 

  4. Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., and Oleynik, I.I., Phys. Rev. B, 2013, vol. 87, no. 5, p. 054109.

    Article  ADS  Google Scholar 

  5. Ashitkov, S.I., Agranat, M.B., Kanel, G.I., and Fortov, V.E., AIP Conf. Proc., 2012, vol. 1426, no. 1, p. 1081.

    Article  ADS  CAS  Google Scholar 

  6. Ashitkov, S.I., Komarov, P.S., Agranat, M.B., Kanel’ G.I., Fortov, V.E., JETP Lett., 2013, vol. 98, no. 7, p. 384.

    Article  ADS  CAS  Google Scholar 

  7. Crowhurst, J.C., Reed, B.W., Armstrong, M.R., Radousky, H.B., Carter, J.A., Swift, D.C., Zaug, J.M., et al., J. Appl. Phys., 2014, vol. 115, no. 11, p. 113506.

    Article  ADS  Google Scholar 

  8. Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Agranat, M.B., and Kanel. G.I., JETP Lett., 2015, vol. 101, no. 4, p. 276.

    Article  ADS  CAS  Google Scholar 

  9. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2020, vol. 58, no. 5, p. 744.

    Article  CAS  Google Scholar 

  10. Struleva, E.V., Komarov, P.S., Evlashin, S.A., and Ashitkov, S.I., High Temp., 2022, vol. 60, no. 5, p. 727.

    Article  CAS  Google Scholar 

  11. Ashitkov, S., Komarov, P., Romashevskiy, S., Struleva, E., and Evlashin, S., J. Appl. Phys., 2022, vol. 132, no. 17, p. 175104.

    Article  ADS  CAS  Google Scholar 

  12. Kanel’ G.I., Fortov, V.E., and Razorenov, S.V., Phys.—Usp., 2007, vol. 50, no. 8, p. 771.

    Article  ADS  Google Scholar 

  13. Kamel, R. and Halim, K., Phys. Status Solidi B, 1966, vol. 15, no. 1, p. 63.

    Article  ADS  CAS  Google Scholar 

  14. Sokolov, L.D., Gladkikh, A.N., Skudnov, V.A., and Solenov, V.M., Metal Sci. Heat Treat, 1969, vol. 11, p. 626.

    Article  ADS  Google Scholar 

  15. Betteridge, W., Prog. Mater. Sci., 1980, vol. 24, p. 51.

    Article  Google Scholar 

  16. Walsh, J.M., Rice, M.H., McQueen, R.G., and Yarger, F.L., Phys. Rev., 1957, vol. 108, p. 196.

    Article  ADS  CAS  Google Scholar 

  17. Baumung, K., Bluhm, H., Kanel, G.I., Muller, G., Razorenov, S.V., Singer, J., and Utkin, A.V., Int. J. Impact Eng., 2001, vol. 25, no. 7, p. 631.

    Article  Google Scholar 

  18. Razorenov, S.V., Kanel’, G.I., Kramshonkov, E.N., and Baumung, K., Combust., Explos. Shock Waves, 2002, vol. 38, no. 5, p. 598.

    Article  Google Scholar 

  19. Zaretsky, E., J. Appl. Phys., 2010, vol. 108, no. 8, p. 083525.

    Article  ADS  Google Scholar 

  20. Khmelnitsky, R.A., Evlashin, S.A., Martovitsky, V.P., Pastchenko, P.V., Dagesian, S.A., Alekseev, A.A., Suetin, N.V., and Gippius, A.A., Cryst. Growth Des., 2016, vol. 16, no. 3, p. 1420.

    Article  CAS  Google Scholar 

  21. Liu, J.M., Opt. Lett., 1982, vol. 7, no. 5, p. 196.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Moore, D.S., Gahagan, K.T., Reho, J.H., Funk, D.J., Buelow, S.J., Rabie, R.L., and Lippert, T., Appl. Phys. Lett., 2001, vol. 78, no. 1, p. 40.

    Article  ADS  CAS  Google Scholar 

  23. Linde, D. and Schuler, H., J. Opt. Soc. Am. B, 1996, vol. 13, no. 1, p. 216.

    Article  ADS  Google Scholar 

  24. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., Vestn. Ob”ed. Inst. Vys. Temp., 2018, vol. 1, no. 1, p. 130.

    Google Scholar 

  25. Geindre, J.P., Audebert, P., Rebibo, S., and Gauthier, J.C., Opt. Lett., 2001, vol. 26, no. 20, p. 1612.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Temnov, V.V., Sokolovski-Tinten, K., Zhou, P., and Linde, D., J. Opt. Soc. Am. B, 2006, vol. 23, no. 9, p. 1954.

    Article  ADS  CAS  Google Scholar 

  27. Funk, D.J., Moore, D.S., Gahagan, K.T., Buelow, S.J., Reho, J.H., Fisher, G.L., and Rabie, R.L., Phys. Rev. B, 2001, vol. 64, p. 115114.

    Article  ADS  Google Scholar 

  28. Gahagan, K.T., Moore, D.S., Funk, D.J., Rabie, R.L., Buelow, S.J., and Nicholson, J.W., Phys. Rev. Lett., 2000, vol. 85, no. 15, p. 3205.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Kanel, G.I., Int. J. Fract., 2010, vol. 163, p. 173.

    Article  Google Scholar 

  30. Stepanov, G.V., Probl. Prochnosti, 1976, no. 8, p. 66.

  31. Kanel’ G.I., J. Appl. Mech. Tech. Phys., 2001, vol. 42, no. 2, p. 358.

    Article  ADS  Google Scholar 

  32. Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., Zhakhovskii, V.V., Inogamov, N.A., Komarov, P.S., Ovchinnikov, A.V., et al., JETP Lett., 2010, vol. 91, no. 9, p. 471.

    Article  ADS  CAS  Google Scholar 

  33. Anisimov, S.I., Inogamov, N.A., Petrov, Y.V., Khokhlov, V.A., Zhakhovskii, V.V., Nishihara, K., Agranat, M.B., et al., Appl. Phys. A, 2008, vol. 92, p. 797.

    Article  ADS  CAS  Google Scholar 

  34. Balibar, S. and Caupin, F., J. Phys.: Condens. Matter, 2003, vol. 15, no. 1, p. 75.

    ADS  Google Scholar 

  35. Mayer, A.E. and Mayer, P.N., J. Appl. Phys., 2015, vol. 118, no. 3, p. 035903.

    Article  ADS  Google Scholar 

  36. LASL Shock Hugoniot Data, Marsh, S.P., Ed., Berkeley: Univ. California Press, 1980, vol. 5, p. 56.

    Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement with the Joint Institute for High Temperatures, Russian Academy of Sciences, no. 075-01129-23-00 of December 29, 2022) on equipment of the Shared Use Center Laser Femtosecond Complex of JIHT RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Struleva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struleva, E.V., Komarov, P.S., Evlashin, S.A. et al. High-Speed Cobalt Film Fracture under the Action of Loads Created by a Picosecond Laser Pulse. High Temp 61, 496–501 (2023). https://doi.org/10.1134/S0018151X23040156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23040156

Navigation