Skip to main content
Log in

Analysis of the Kinematic Viscosity and Self-Diffusion of Liquid Metals at the Melting Temperature

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The influences of the atomic size and mass on the kinematic viscosity and self-diffusion coefficient of metal liquids have been studied. The analysis was performed with experimental data on the kinetic properties of metals at the melting temperature. Regression analysis shows that the kinematic viscosity and self-diffusion coefficient increase with an increase in the size of atoms and a decrease in their mass. Note that the atomic mass is more closely related to the kinetic properties of a metal liquid in comparison with the atomic size. It is proposed to use the size–mass factor (which is equal to the ratio of the size of an atom to a square root of its mass) to analyze the kinetic properties of a liquid. The relationship between the kinetic properties and the size–mass factor is characterized by a adjusted determination coefficient, the value of which is above 0.90. It is shown that the kinematic viscosity of a liquid and the self-diffusion coefficient decrease with an increase in the cluster size. It was determined from the dimensionless kinetic parameters that the dimensionless excess entropy at the melting temperature is close to the calculated values for the solidification point of a simple liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Leningrad: Nauka, 1975.

  2. Beltyukov, A.L., Olyanina, N.V., and Ladyanov, V.I., High Temp., 2019, vol. 57, no. 1, p. 41.

    Article  Google Scholar 

  3. Khusnutdinov, R.M., Mokshin, A.V., Bel’tyukov, A.L., and Olyanina, N.V., High Temp., 2018, vol. 56, no. 2, p. 201.

    Article  Google Scholar 

  4. Chikova,O.A., Tsepelev, V.S., and Moskovskikh, O.P., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 6, p. 979.

    Article  Google Scholar 

  5. Gel’chinskii, B.R., Mirzoev, A.A., and Vorontsov, A.G., Vychislitel’nye metody mikroskopicheskoi teorii metallicheskikh rasplavov i nanoklasterov (Computational Methods of the Microscopic Theory of Metal Melts and Nanoclusters), Moscow: Fizmatlit, 2011.

  6. Physics of Simple Liquids, Temperley, N.H.V., Rowlinson, J.S., and Rushbrooke, G.S., Eds., Amsterdam: North Holland, 1968.

    Google Scholar 

  7. De With, G., Liquid-State Physical Chemistry: Fundamentals, Modeling, and Applications, Weinheim: Wiley, 2013.

    Book  Google Scholar 

  8. Glasstone, S., Laidler, K.J., and Eyring, H., The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, New York: McGraw-Hill, 1941.

    Google Scholar 

  9. Lindemann, F.A., Phys. Z., 1910, vol. 11, p. 609.

    Google Scholar 

  10. Andrade, E.N., Philos. Mag., 1934, vol. 17, p. 497.

    Article  Google Scholar 

  11. Iida, T., Guthrie, R., Isac, M., and Tripathi, N., Metall. Mater. Trans. B, 2006, vol. 37, p. 402.

    Google Scholar 

  12. Iida, T., Guthrie, R., and Tripathi, N., Metall. Mater. Trans. B, 2006, vol. 37, p. 559.

    Article  Google Scholar 

  13. Kaptay, G., Z. Metallkd, 2005, vol. 96, p. 24.

    Article  Google Scholar 

  14. Mishra, P.C., Mukherjee, S., Nayak, S.K., and Panda, A., Int. Nano Lett., 2014, vol. 4, p. 109.

    Article  Google Scholar 

  15. Glyde, H.R., J. Phys. Chem. Solids, 1967, vol. 28, p. 2061.

    Article  ADS  Google Scholar 

  16. Grimvall, G. and Sjodin, S., Phys. Scr., 1974, vol. 10, p. 340.

    Article  ADS  Google Scholar 

  17. Lawson, A.C., Philos. Mag., 2009, vol. 89, p. 1757.

    Article  ADS  Google Scholar 

  18. Iida, T. and Guthrie, R.I.L., The Thermophysical Properties of Metallic Liquids, Oxford: Oxford Univ. Press, 2015.

    Book  Google Scholar 

  19. Stewart, G.R., Rev. Sci. Instrum., 1983, vol. 54, p. 1.

    Article  ADS  Google Scholar 

  20. Greenwood, N.N. and Earnshow, A., Chemistry of the Elements, Oxford: Butterworth-Heinemann, 1998.

    Google Scholar 

  21. Longuet-Higgins, H.C. and Pople, J.A., J. Chem. Phys., 1956, vol. 25, p. 884.

    Article  ADS  MathSciNet  Google Scholar 

  22. Hover, W.G. and Ree, F.H., J. Chem. Phys., 1968, vol. 49, p. 3609.

    Article  ADS  Google Scholar 

  23. Rosenfeld, Y., Phys. Rev. A: At., Mol., Opt. Phys., 1977, vol. 15, p. 2545.

    Google Scholar 

  24. Dzugutov, M., Nature, 1996, vol. 381, p. 137.

    Article  ADS  Google Scholar 

  25. Rosenfeld, Y., J. Phys.: Condens. Matter, 1999, vol. 11, p. 5415.

    ADS  Google Scholar 

  26. Poole, C.P., Jr. and Owens, F.J., Introduction to Nanotechnology, Hoboken, NJ: Wiley, 2003.

    Google Scholar 

Download references

Funding

This study was performed within State contract FEUZ-0836-0020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. N. Starodubtsev or V. S. Tsepelev.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubtsev, Y.N., Tsepelev, V.S. Analysis of the Kinematic Viscosity and Self-Diffusion of Liquid Metals at the Melting Temperature. High Temp 59, 192–197 (2021). https://doi.org/10.1134/S0018151X21030135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21030135

Navigation