Skip to main content
Log in

On the theory of the thermophysical properties of liquid nontransition metals

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The self-diffusion, viscosity, and surface tension coefficients of liquid nontransition metals near their melting points are considered using a modified hard sphere model. It is shown that, as a rule, the calculated coefficients agree with the experimental data and that the well-known Sutherland relation between self-diffusion and viscosity coefficients and the Born-Green relation between viscosity and surface tension hold true in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Subbotin, M. N. Ivanovskii, and M. A. Arnol’dov, Physicochemical Fundamentals of the Application of Liquid-Metal Coolants (Atomizdat,–Moscow, 1970).

    Google Scholar 

  2. G. S. Ershov and V. P. Maiboroda, Diffusion in Metallic Melts (Naukova Dumka, 1990).

    Google Scholar 

  3. R. Kh. Dadashev, Thermodynamics of Surface Phenomena, Ed. by Kh. B. Khokonov (Fizmatlit, Moscow, 2007).

  4. E. E. Shpil’rain, V. A. Fomin, S. N. Skovorod’ko, and G. F. Sokol, Study of the Viscosity of Liquid Metals (Nauka, Moscow, 1983).

    Google Scholar 

  5. G. Kaptay, “A unified equation for the viscosity of pure liquid metals,” Z. Metallkd. 96 (1), 1–8 (2005).

    Article  Google Scholar 

  6. T. Iida, R. Guthrie, M. Isac, and N. Tripathi, “Accurate predictions for the viscosities of several liquid transition metals, plus barium and strontium,” Metallurg. Mater. Trans. B 37, 403–412 (2006).

    Article  Google Scholar 

  7. G. Kaptay, “A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals,” Int. J. Mat. Res. 99 (1), 14–17 (2008).

    Article  Google Scholar 

  8. P. Protopapas, H. C. Andersen, and N. A. D. Parlee, “Theory of transport in liquid metals. I. Calculation of self-diffusion coefficients,” J. Chem. Phys. 59 (1), 15–25 (1973).

    Article  Google Scholar 

  9. P. Protopapas, H. C. Andersen, and N. A. D. Parlee, “Theory of transport in liquid metals. II. Calculation of shear viscosity coefficients,” Chem. Phys. 8 (1), 17–26 (1975).

    Article  Google Scholar 

  10. Y. Waseda, The Structure of Non-Crystalline Materials: Liquid and Amorphous Solids, Ed. by Y. Waseda (McGraw-Hill, New York, 1980).

  11. A. R. Regel’ and V. M. Glazov, Periodic Law and the Physical Properties of Electronic Melts (Nauka, Moscow, 1978).

    Google Scholar 

  12. V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev, and V. I. Kononenko, “Theory of transfer in liquid metals. Calculation of dynamic viscosity,” Teplofiz. Vys. Temp. 41 (6), 860–869 (2003).

    Google Scholar 

  13. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  14. R. J. Speedy, “Diffusion in the hard sphere fluid,” Molec. Phys. 62 (2), 509–515 (1987).

    Article  Google Scholar 

  15. H. J. Saxton and O. D. Sherby, “Viscosity and atomic mobility in liquid metals,” Trans. ASM 55 (1), 826–843 (1962).

    Google Scholar 

  16. A. R. Regel’ and V. M. Glazov, Laws of Structure Formation in Electronic Melts (Nauka, Moscow, 1982).

    Google Scholar 

  17. E. N. Andrade, “A theory of the viscosity of liquids,” Phil. Mag. 17 (112), 497–511 (1934).

    Article  Google Scholar 

  18. V. Heine and D. Weaire, “Theory of adhesion forces and crystalline structures in the pseudopotential scheme,” in The Pseudopotential Concept (McGrw-Hill, New York, 1970), pp. 295–543.

    Google Scholar 

  19. D. K. Belashchenko, “Computer simulation of liquid metals,” Usp. Fiz. Nauk 183 (12), 1281–1322 (2013).

    Article  Google Scholar 

  20. V. G. Postovalov, E. P. Romanov, I. Zh. Sattybaev, and V. P. Kondrat’ev, “Coefficients of self-diffusion and viscosity of some liquid metals,” Rasplavy, No. 4, 42–51 (2012).

    Google Scholar 

  21. V. I. Nizhenko, “Liquid metal density and its temperature dependence,” in Methods of Investigation and Properties the Interfaces of Contacting Phases (Naukova Dumka, Kiev, 1977), pp. 125–163.

    Google Scholar 

  22. I. N. Fridlyander and A. A. Kolpachev, “Viscosity of high-purity aluminum,” Izv. Akad. Nauk SSSR, Ser. Met., No. 4, 38–41 (1980).

    Google Scholar 

  23. N. Yu. Konstantinova, P. S. Popel’, and D. A. Yagodin, “Kinematic viscosity of liquid copper–aluminum alloys,” Teplofiz. Vys. Temp. 47 (3), 354–359 (2009).

    Google Scholar 

  24. M. G. Frohberg, “Viskositätsmessungen an flüssigen metallen und metallegierungen,” Metall. 38 (12), 1152–1156 (1984).

    Google Scholar 

  25. I. Yokoyama, “A relationship between structural, thermodynamic, transport and surface properties of liquid metals: a hard-sphere description,” Physica B 291 (1–2), 145–151 (2000).

    Article  Google Scholar 

  26. A. S. Chauhan, R. Ravi, and R. P. Chhabra, “Self-diffusion in liquid metals,” Chem. Phys. 252 (1–2), 227–236 (2000).

    Article  Google Scholar 

  27. Y. P. Gupta, “On solute diffusion in liquid tin,” Acta Metallurg. 14 (8), 1007–1008 (1966).

    Article  Google Scholar 

  28. G. Mathiak, A. Griesche, K. H. Kraatz, and M. G. Frohberg, “Diffusion in liquid metals,” J. NonCrystal. Solids 205–207, 412–416 (1996).

    Article  Google Scholar 

  29. S. W. Mayer, “A molecular parameter relationship between surface tension and liquid compressibility,” J. Phys. Chem. 67 (10), 2160–2164 (1963).

    Article  Google Scholar 

  30. Y. Waseda and K. T. Jacob, “Refinement of the correlation between isothermal compressibility and surface tension of liquid metals,” Phys. Stat. Sol. (a) 68 (2), K117–K122 (1981).

    Article  Google Scholar 

  31. V. I. Nizhenko and L. I. Floka, Surface Tension of Liquid Metals and Alloys: A Handbook (Metallurgiya, Moscow, 1981).

    Google Scholar 

  32. J. F. Wax, R. Albaki, and J. L. Bretonnet, “Temperature dependence of the diffusion coefficient in liquid alkali metals,” Phys. Rev. B 65, 014301–014309 (2001).

    Article  Google Scholar 

  33. A. V. Samsonnikov, V. P. Kazimirov, A. S. Roik, and V. E. Sokol’skii, “Comparative analysis of the structural models of liquid metals (Na, K, Al) obtained by molecular dynamics and reverse Monte Carlo methods,” Ukr. Khim. Zh. 73 (11), 30–35 (2007).

    Google Scholar 

  34. Sui Yang, Xuping Su, Jianhua Wang, et al., “Molecular dynamics analysis of temperature dependence of liquid metal diffusivity,” Metallurg. Mater. Trans. A 40 (13), 3108–3116 (2009).

    Article  Google Scholar 

  35. S. J. Larsson, C. Roxbergh, and A. Lodding, “Self-diffusion in liquid alkali metals,” Phys. Chem. Liquids 3 (3), 137–146 (1972).

    Article  Google Scholar 

  36. M. W. Ozelton and R. A. Swalin, “Self-diffusion in liquid sodium at constant volume and constant pressure,” Phil. Mag. 18 (153), 441–451 (1968).

    Article  Google Scholar 

  37. Handbook of Thermodynamic and Transport Properties of Alkali Metals, Ed. by R. W. Ohse (Blackwell Scientific, Oxford, 1985).

  38. A. Norden and A. Lodding, “Self-transport electroconvection and effective self-diffusion in liquid rubidium metal,” Z. Naturf. A 22 (2), 215–219 (1967).

    Article  Google Scholar 

  39. H. M. Lu, G. Li, Y. F. Zhu, and Q. Jiang, “Temperature dependence of self-diffusion coefficient in several liquid alkali metals,” J. Non-Cryst. Solids 352 (26–27), 2797–2800 (2006).

    Article  Google Scholar 

  40. J. Petit and N. H. Nachtrieb, “Self-diffusion in liquid gallium,” J. Chem. Phys. 24 (5), 1027–1028 (1956).

    Article  Google Scholar 

  41. E. F. Broome and H. A. Walls, “Self-diffusion measurements in liquid gallium,” Trans. Metall. Soc. AIME 245 (4), 739–741 (1969).

    Google Scholar 

  42. A. Lodding, “Selbstdiffusion in geschmolzenem indiummetall,” Z. Naturf. A 11 (3), 200–203 (1956).

    Article  Google Scholar 

  43. R. E. Barras, H. A. Walls, and A. L. Hines, “Liquid thallium self-diffusion measurements,” Metallurg. Trans. 6 (2), 347–348 (1975).

    Article  Google Scholar 

  44. S. J. Rothman and L. D. Hall, “Diffusion in liquid lead,” Trans. AIME 206 (2), 199–203 (1956).

    Google Scholar 

  45. V. G. Postovalov, E. P. Romanov, and V. P. Kondrat’ev, “On the theory of mass transfer in liquid metals,” Fiz. Met. Metalloved. 107 (1), 3–14 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Postovalov.

Additional information

Original Russian Text © V.G. Postovalov, I.Zh. Sattybaev, E.P. Romanov, 2015, published in Rasplavy, 2015, No. 1, pp. 17–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postovalov, V.G., Sattybaev, I.Z. & Romanov, E.P. On the theory of the thermophysical properties of liquid nontransition metals. Russ. Metall. 2015, 153–161 (2015). https://doi.org/10.1134/S0036029515020111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029515020111

Keywords

Navigation