Skip to main content
Log in

Influence of the Pulse Shape on Heat Transfer at the Stagnation Point of an Unsteady Axisymmetric Impinging Jet

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A numerical study of the effect of the pulse shape (rectangular, triangular, and sinusoidal) on heat transfer at the stagnation point of a turbulent pulsed jet was carried out. It is shown that both an increase and a suppression of heat transfer are possible in a nonstationary impinging jet in comparison with a stationary jet for all studied pulse shapes. In the area of small distances between the pipe outlet cross-section and the target surface (H/D ≤ 6) in a pulsed jet, the heat transfer at the stagnation point increases with an increase in the pulse frequency, while an increase in frequency causes a decrease in heat transfer for H/D > 8. An increase in the Reynolds number leads to a decrease in the heat transfer intensification ratio, and the data for all frequencies approach the steady-state impinging jet regime. The predicted results are compared with the experimental data available in the literature. Satisfactory agreement was obtained on the effect of the shape and frequency of pulses on heat transfer at the stagnation point by the target surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Dyban, E.P. and Mazur, A.I., Konvektivnyi teploobmen pri struinom obtekanii tel (Convective Heat Transfer in a Jet Flow around Bodies), Kiev: Naukova Dumka, 1982.

  2. Jambunathan, K., Lai, E., Moss, M.A., and Button, B.L., Int. J. Heat Fluid Flow, 1992, vol. 13, p. 106.

    Article  ADS  Google Scholar 

  3. Webb, B.W. and Ma, C.F., Adv. Heat Transfer, 1995, vol. 26, p. 105.

    Article  Google Scholar 

  4. Zuckerman, N. and Lior, N., Adv. Heat Transfer, 2006, vol. 39, p. 565.

    Article  Google Scholar 

  5. Carlomagno, G.M. and Ianiro, A., Exp. Therm. Fluid Sci., 2014, vol. 58, p. 15.

    Article  Google Scholar 

  6. Zumbrunnen, D.A. and Aziz, M., ASME J. Heat Transfer, 1993, vol. 115, p. 91.

    Article  ADS  Google Scholar 

  7. Sailor, D.J., Rohli, D.J., and Fu, Q.L., Int. J. Heat Fluid Flow, 1999, vol. 20, p. 574.

    Article  Google Scholar 

  8. Hofmann, H.M., Kaiser, R., Kind, M., and Martin, H., Numer. Heat Transfer, Part B, 2007, vol. 51, no. 6, p. 565.

    Article  ADS  Google Scholar 

  9. Herwig, H. and Middelberg, G., Acta Mech., 2008, vol. 201, p. 171.

    Article  Google Scholar 

  10. Middelberg, G. and Herwig, H., Heat Mass Transfer, 2009, vol. 45, p. 1519.

    Article  ADS  Google Scholar 

  11. Geng, L.P., Zheng, C.B., and Zhou, J.W., Int. Commun. Heat Mass Transfer, 2015, vol. 66, p. 105.

    Article  Google Scholar 

  12. Tang, C., Zhang, J.Z., Lyu, Y.W., and Tan, X.M., Heat Mass Transfer, 2020, vol. 56, p. 183.

    Article  ADS  Google Scholar 

  13. Xu, P., Yu, B., Qiu, S.X., Poh, H.J., and Mujumdar, A.S., Int. J. Therm. Sci., 2010, vol. 49, p. 1247.

    Article  Google Scholar 

  14. Mohammadpour, J., Rajabi-Zargarabadi, M., Mujumdar, A.S., and Ahmadi, H., Int. J. Therm. Sci., 2014, vol. 76, p. 118.

    Article  Google Scholar 

  15. Pakhomov, M.A. and Terekhov, V.I., High Temp., 2013, vol. 51, no. 2, p. 256.

    Article  Google Scholar 

  16. Craft, T.J. and Launder, B.E., AIAA J., 1992, vol. 30, p. 2970.

    Article  ADS  Google Scholar 

  17. Baughn, J.W. and Shimizu, S., ASME J. Heat Transfer, 1989, vol. 111, p. 1096.

    Article  Google Scholar 

  18. Baughn, J.W., Hechanova, A., and Yan, X., ASME J. Heat Transfer, 1991, vol. 113, p. 1023.

    Article  Google Scholar 

  19. Behnia, M., Parneix, S., and Durbin, P.A., Int. J. Heat Mass Transfer, 1998, vol. 41, p. 1845.

    Article  Google Scholar 

  20. Merci, B. and Dick, E., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 469.

    Article  Google Scholar 

  21. Volkov, K.N., High Temp., 2007, vol. 45, no. 6, p. 818.

    Article  Google Scholar 

Download references

Funding

The study was financed by the Russian Science Foundation (project no. 19-79-30075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Pakhomov or V. I. Terekhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. Influence of the Pulse Shape on Heat Transfer at the Stagnation Point of an Unsteady Axisymmetric Impinging Jet. High Temp 59, 253–258 (2021). https://doi.org/10.1134/S0018151X21030093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21030093

Navigation