Skip to main content
Log in

Convective heat transfer under unsteady impinging jets: the effect of the shape of the unsteadiness

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Unsteady impinging jets are systematically controlled with respect to their time dependence in order to investigate the influence of unsteadiness on the heat transfer performance. This is achieved by a special mass flow control device, which allows almost arbitrary shapes of unsteadiness to be imposed onto the impinging jet. Three different standard signals (sinusoidal, triangular, rectangular) and two specially designed signals are applied and their influence on heat transfer is determined in terms of an enhancement factor. Heat transfer augmentation up to 30% was found and could be physically explained with the help of PIV and hot-wire measurements of the flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A :

Area (m2)

D :

Nozzle diameter (m)

f :

Frequency (Hz)

F :

Dimensionless function (–)

H :

Nozzle-to-plate distance (m)

I :

Electrical current (A)

k :

Thermal conductivity (W/mK)

\( \dot{m} \) :

Mass flow rate (kg/s)

n :

Counter (–)

N :

Number of samples (–)

Nu :

Nusselt number (–)

Pr :

Prandtl number (–)

\( \dot{q} \) :

Heat flux density (W/m2)

r :

Radial distance, radius (m)

R :

Electrical resistance (Ω)

Re :

Reynolds number (–)

s :

Input signal (V)

S :

Material thickness (m)

T :

Temperature (K)

u :

Velocity (m/s)

U :

Voltage (V)

α :

Electrical resistance coefficient (1/K)

Λ:

Enhancement coefficient (–)

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg/m3)

τ :

Time (s)

τ s :

Period length (s)

\( \hat{\tau } \) :

Integration time (s)

Φ:

Phasing (–)

A :

Area

AMB:

Ambient

c:

Conduction

cl:

Centerline

conv:

Convection

e:

Electrical

F:

Fluid

i :

Isolation

m:

Area mean

R:

1. Rectangular

2. Reference

S:

1. Surface

2. Sinusoidal

SF:

Single field

st:

Steady

T:

Triangular

0:

At 0°C

–:

Time mean

References

  1. Göppert S, Gürtler T, Mocikat H, Herwig H (2004) Heat transfer under a precessing jet: effects of unsteady jet impingement. Int J Heat Mass Transfer 47:2795–2806

    Article  Google Scholar 

  2. Jambunathan K, Lai E, Moss M, Button B (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13:106–115

    Article  Google Scholar 

  3. Martin H (1977) Heat and mass transfer between impinging gas jets and solid surface. Adv Heat Transf 13:1–60

    Article  Google Scholar 

  4. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (2006) VDI-Wärmeatlas. Springer, Berlin

    Book  Google Scholar 

  5. Azevedo LFA, Webb BM, Queiroz M (1994) Pulsed air jet impingement heat transfer. Exp Therm Fluid Sci 8(3):206–213

    Article  Google Scholar 

  6. Sailor DJ, Rohli DJ, Fu Q (1999) Effect of variable duty cycle flow pulsations on heat transfer enhancement for an impinging air jet. Int J Heat Fluid Flow 20:574–580

    Article  Google Scholar 

  7. Herwig H, Mocikat H, Gürtler T, Göppert S (2004) Heat transfer due to unsteadily impinging jets. Int J Therm Sci 43:733–741

    Article  Google Scholar 

  8. Nevins, R.G.; Ball, HD (1961) Heat transfer between a flat plate and a pulsating impinging jet. In: Proceedings of national heat transfer conference, Boulder, CO, pp 510-516

  9. Herwig H, Middelberg G (2008) The physics of unsteady jet impingement and its heat transfer performance. Acta Mechanica 201:171–184

    Article  MATH  Google Scholar 

  10. Zhou JW, Wang G, Middelberg G, Herwig H (2008) Unsteady jet impingement: heat transfer on smooth and non-smooth surfaces. Commun Heat Mass Transf 36:103–110

    Article  Google Scholar 

  11. Durst F, Heim U, Ünsal B, Kullik G (2003) Mass flow rate control system for time-dependent laminar and turbulent flow investigations. Measurement Sci Technol 14:893–902

    Article  Google Scholar 

  12. Yule AJ (1978) Large-scale structure in the mixing layer of a round jet. J Fluid Mech 89:413–432

    Article  Google Scholar 

  13. Kataoka K, Suguro M, Degawa H, Maruo K, Mihata I (1987) The effect of surface renewal due to large-scale eddies on jet impingement heat transfer. Int J Heat Mass Transf 30:559–567

    Article  Google Scholar 

  14. Glezer A, Amitay M (2002) Synthetic jets. Ann Rev Fluid Mech 34:503

    Article  MathSciNet  Google Scholar 

  15. Bremhorst K, Hollis G (1990) Velocity Field of an axisymmetric pulsed, subsonic air jet. AIAA J 28(12):2043–2049

    Article  Google Scholar 

  16. Lai H, Naughton JW, Lindberg WR (2003) An experimental investigation of starting impinging jets. J Fluids Eng 125(2):275–282

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the DFG (Deutsche Forschungsgemeinschaft) for their support of this study. They also want to thank Dr. Sid Becker, North Carolina State University and Humboldt Fellow at TU Hamburg-Harburg, for his assistance in preparing the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middelberg, G., Herwig, H. Convective heat transfer under unsteady impinging jets: the effect of the shape of the unsteadiness. Heat Mass Transfer 45, 1519–1532 (2009). https://doi.org/10.1007/s00231-009-0527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-009-0527-4

Keywords

Navigation