Skip to main content
Log in

Model for the Calculation of the Dissociation Rate of Nitride Fuel at High Temperatures

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A simple theoretical model is proposed in this paper based on an analysis of the experimental data available in the available literature. It describes the rate of mass loss during the dissociation of uranium nitride in a vacuum and in a gas atmosphere due to the evaporation of substances from the surface of materials. The proposed model can be used to assess the degree of dissociation of uranium nitride, which is one of the main causes of fuel destruction, since congruent melting is observed only at high nitrogen pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kirillov, P.L., Terent’eva, M.I., Deniskina, N.B., Teplofizicheskie svoistva materialov yadernoi tekhniki (Thermophysical Properties of Nuclear Technology Materials), Moscow: Rosenergoatom, 2007.

  2. Olson, W.M. and Mulford, R.N.R., J. Phys. Chem., 1963, vol. 67, no. 4, p. 952.

    Article  Google Scholar 

  3. Benz, R. and Bowman, M.G., J. Am. Chem. Soc., 1966, vol. 88, no. 2, p. 264.

    Article  Google Scholar 

  4. Bugl, J. and Bauer, A.A., J. Am. Ceram. Soc., 1964, vol. 47, no. 9, p. 425.

    Article  Google Scholar 

  5. Alexander, C.A., Ogden, J.S., and Pardue, W.M., J. Nucl. Mater., 1969, vol. 31, p. 13.

    Article  ADS  Google Scholar 

  6. Gingerich, K.A., J. Chem. Phys., 1969, vol. 51, no. 10, p. 4433.

    Article  ADS  Google Scholar 

  7. Prins, G., Cordfunke, E.H.P., and Depaus, R., J. Nucl. Mater., 1980, vol. 89, p. 221.

    Article  ADS  Google Scholar 

  8. Hayes, S.L., Thomas, J.K., and Peddicord, K.L., J. Nucl. Mater., 1990, vol. 171, p. 300.

    Article  ADS  Google Scholar 

  9. Suzuki, Y., Maeda, A., Arai, Y., and Ohmichi, T., J. Nucl. Mater., 1992, vol. 188, p. 239.

    Article  ADS  Google Scholar 

  10. Balankin, S.A., Loshmanov, L.P., Skorov, D.M., and Sokolov, V.S., Sov. At. Energy, 1978, vol. 44, no. 4, p. 327.

    Article  Google Scholar 

  11. Lunev, A.V., Mikhalchik, V.V., Tenishev, A.V., and Baranov, V.G., J. Nucl. Mater., 2016, vol. 475, p. 266.

    Article  ADS  Google Scholar 

  12. Baranov, V.G., Lunev, A.V., Mickhalchik, V.V., et al., IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 130, 012022.

  13. Baranov, V.G., Tenishev, A.V., Kuzmin, R.S., et al., Ann. Nucl. Energy, 2014, vol. 87, no. 2, p. 784.

    Article  Google Scholar 

  14. Mikhalchik, V.V., Tenishev, A.V., Baranov, V.G., and Kuzmin, R.S., Adv. Mater. Res., 2014, vol. 1040, p. 47.

    Article  Google Scholar 

  15. Kucherov, R.Ya. and Rikenglaz, R.E., Zh. Eksp. Teor. Fiz., 1959, vol. 37, no. 1(7), p. 125.

  16. Knake, O. and Stranskii, I.N., Prog. Met. Phys., 1956, vol. 6, p. 181.

    Article  Google Scholar 

  17. Garner, F.H. and Suckling, R.D., AIChE J., 1958, vol. 4, no. 1, p. 114.

    Article  Google Scholar 

  18. Churchill, S.W., Chem. Eng. Commun., 1983, vol. 24, p. 339.

    Article  Google Scholar 

  19. Al-Arabi, M. and Salman, Y., Int. J. Heat Mass Transfer, 1980, vol. 23, p. 45.

    Article  Google Scholar 

  20. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 10: Fizicheskaya kinetika (Physical Kinetics), Moscow: Fizmatlit, 2002.

  21. Olson, W.M. and Mulford, R.N.R., J. Phys. Chem., 1964, vol. 68, no. 5, p. 1048.

    Article  Google Scholar 

  22. Usov, E.V., Butov, A.A., Chukhno, V.I., et al., At. Energy, 2018, vol. 124, no. 3, p. 147.

    Article  Google Scholar 

  23. Usov, E.V., Butov, A.A., Chukhno, V.I., et al., At. Energy, 2018, vol. 124, no. 4, p. 232.

    Article  Google Scholar 

  24. Butov, A.A., Zhdanov, V.S., Klimonov, I.A., et al., Thermal Eng., 2019, vol. 66, no. 5, p. 302.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Usov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usov, E.V., Chukhno, V.I., Kudashov, I.G. et al. Model for the Calculation of the Dissociation Rate of Nitride Fuel at High Temperatures. High Temp 58, 222–226 (2020). https://doi.org/10.1134/S0018151X20020194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20020194

Navigation