Skip to main content
Log in

Thermodynamic Modeling of the Phase Composition of Mixed Uranium-Plutonium Mononitride with Impurity Oxygen Under Irradiation to Burnup 140 GW·days/ton and Temperature 900–1400 K

  • Published:
Atomic Energy Aims and scope

Thermodynamic modeling of the phase composition of mixed uranium-plutonium mononitride with impurity oxygen as a function of burnup and temperature under irradiation by fast neutrons has shown that the accumulation of fission products results in the formation of heterogeneous fuel: a multicomponent solid solution based on uranium-plutonium oxynitride that contains yttrium, zirconium, and lanthanides and separate nitride, oxide, metal, and intermetallides phases as well as alkaline-metal iodides and, apparently, bromides. The change in the content of these phases as a function of burnup to 140 GW·days/ton and temperature 900–1400 K is calculated. The effect of the individual phases formed in the course of irradiation on the effective thermal conductivity of the fuel is evaluated together with the diffusion coefficient of xenon atoms in the fuel kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Troyanov, A. F. Grachev, L. M. Zabud’ko, et al., “Prospects for using nitride fuel in fast reactors with a closed fuel cycle,” At. Énerg., 117, No. 2, 69–74 (2014).

    Article  Google Scholar 

  2. S. V. Alekseev and V. A. Zaitsev, Nitride Fuel for Nuclear Power, Tekhnosfera, Moscow (2013).

    Google Scholar 

  3. Y. Arai, A. Maeda, K. Shiozawa, et al., “Chemical forms of solid fission products in the irradiated uranium-plutonium mixed nitride fuel,” J. Nucl. Mater., 210, 161–166 (1994).

    Article  ADS  Google Scholar 

  4. G. S. Bulatov, K. N. Gedgovd, and D. Yu. Lyubimov, “Thermodynamic analysis of the chemical and phase compositions of fast-neutron irradiated uranium-plutonium nitride as a function of temperature and burnup,” Materialovedenie, No. 1(142), 2–7 (2009).

  5. D. Yu. Lyubimov, A. V. Androsov, G. S. Bulatov, et al., “Thermodynamic modeling of the phase composition of mixed uranium-plutonium mononitride under irradiation by fast neutrons to burnup 80 GW·days/ton and temperature 900–1400 K,” At. Énerg., 114, No. 4, 198–202 (2013).

    Article  Google Scholar 

  6. Y. Arai, M. Morihira, and T. Ohmichi, “The effect of oxygen impurity on the characteristics of uranium and uranium plutonium mixed nitride fuels,” J. Nucl. Mater., 202, 70–78 (1993).

    Article  ADS  Google Scholar 

  7. D. Yu. Lyubimov, A. V. Androsov, G. S. Bulatov, et al., “Thermodynamic modeling of the dissolution of oxygen in uranium mononitride at temperature 900–1400 K,” Radiokhimiya, 56, No. 5, 423–426 (2014).

    Google Scholar 

  8. B. G. Trusov, Thermodynamic Method of Analysis of High-Temperature States and Processes and Its Implementation in Practice: Dissert. Doct. Techn. Sci., MGTU im. N. E. Baumana, Moscow (1984).

    Google Scholar 

  9. R. B. Kotel’nikov, S. N. Bashlykov, A. N. Kashtanov, et al., High-Temperature Nuclear Fuel, Atomizdat, Moscow (1978), 2nd ed.

    Google Scholar 

  10. B. D. Rogozkin, N. M. Stepennova,Yu. E. Fedorov, et al., “Results of tests of mixed mononitride fuel U0.55Pu0.45N and U0.4Pu0.6N in the BOR-60 reactor to burnup 12% h.a.,” At. Énerg., 110, No. 6, 332–346 (2011).

    Article  Google Scholar 

  11. B. D. Rogozkin, N. M. Stepennova, and A. A. Proshkin, “Monotride fuel for fast reactor,” At. Énerg., 95, No. 3, 208–221 (2003).

    Article  Google Scholar 

  12. H. Matsui and M. Tamaki, Electrical Resistivity of β-U 2 N 3 , Nagoya Univ., Japan (1982), pp. 121–125.

    Google Scholar 

  13. K. Kurosaki, T. Matsudab, M. Unoa, et al., “Thermoelectric properties of BaUO3,” J. Alloys and Compounds, 319, 271–275 (2001).

    Article  Google Scholar 

  14. K. Kurosaki, H. Kobayashi, M. Uno, et al., “Thermal conductivities of uranium intermetalic compounds,” J. Nucl. Sci. Techn., No. 3, 811–814 (2002).

  15. V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures, Metallurgiya, Moscow (1989).

    Google Scholar 

  16. K. Tanaka, I. Sato, T. Hirosawa, et al., “Thermophysical properties of perovskite type alkaline-earth metals and plutonium complex oxides,” J. Nucl. Mater., 422, 163–166 (2012).

    Article  ADS  Google Scholar 

  17. Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, IAEA, Vienna (2008).

  18. K. Koumoto, W. S. Seo, and S. Ozawa, Huge Thermopower of Porous Y 2 O 3 , Nagoya Univ., Japan, 464-01 (1997).

    Google Scholar 

  19. N. N. Kovalev, A. V. Petrov, and O. V. Sorokin, “Thermal conductivity of single-crystals of barium, strontium, calcium, and magnesium oxides,” Sov. Phys. Solid State, 13, 232–233 (1971).

    Google Scholar 

  20. V. I. Odelevskii, “Calculation of a generalized conductivity of heterogenous systems,” Zh. Tekhn. Fiz., 21, No. 6, 667–685 (1951).

    Google Scholar 

  21. D. L. Deforest, Transient Fission Gas Behaviour in Uranium Nitride Fuel under Proposed Space Applications, Texas A&M Univ., US (1991).

    Google Scholar 

  22. M. Klipfel, V. Di Marcello, A. Schubert, et al., “Towards a multiscale approach for assessing fission product behavior in UN,” J. Nucl. Mater., 442, 253–261 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 118, No. 1, pp. 24–29, January, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubimov, D.Y., Deryabin, I.A., Bulatov, G.S. et al. Thermodynamic Modeling of the Phase Composition of Mixed Uranium-Plutonium Mononitride with Impurity Oxygen Under Irradiation to Burnup 140 GW·days/ton and Temperature 900–1400 K. At Energy 118, 32–39 (2015). https://doi.org/10.1007/s10512-015-9952-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-015-9952-2

Keywords

Navigation