Skip to main content
Log in

Dynamics of Ablation Plume of Titanium Target under Femtosecond Laser Exposure

  • SHORT COMMUNICATIONS
  • Published:
High Temperature Aims and scope

Abstract

Time and spatial-resolved interferometric technique for continuous registration of motion of titanium sample surface in the picosecond range induced by femtosecond laser pulses of various fluence was used. A qualitative difference in the dynamics of ablation plume expansion was found in case of spallation and phase explosion regimes. The temporal delay of the ejection onset of the excited material surface in a form of a vapor–droplet mixture depending on laser fluence is determined, and the value of the phase explosion threshold is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Anisimov, S.I. and Luk’yanchuk, B.S., Phys.—Usp., 2002, vol. 45, no. 3, p. 293.

    Article  ADS  Google Scholar 

  2. Sokolowski-Tinten, K., Bialkowski, J., and Cavalleri, A., von der Linde, D., Oparin, A., Meyer-ter-Vehn, J., and Anisimov, S.I., Phys. Rev. Lett., 1998, vol. 81, p. 224.

    Article  ADS  Google Scholar 

  3. Bulgakova, N.M., Stoian, R., Rosenfeld, A., Hertel, I.V., and Campbell, E.B., Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 69, 054102.

    Article  ADS  Google Scholar 

  4. Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., Zhakhovskii, V.V., Inogamov, N.A., Nishihara, K., Petrov, Yu.V., Khokhlov, V.A., and Fortov, V.E., Appl. Surf. Sci., 2007, vol. 253, no. 15, p. 6276.

    Article  ADS  Google Scholar 

  5. Povarnitsyn, M.E., Itina, T.E., Sentis, M., Khishchenko, K.V., and Levashov, P.R., Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 75, no. 23, 235414.

    Article  ADS  Google Scholar 

  6. Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., Petrov, Yu.V., Agranat, M.B., Anisimov, S.I., Nishikhara, K., and Fortov, V.E., J. Exp. Theor. Phys., 2008, vol. 107, no. 1, p. 1.

    Article  ADS  Google Scholar 

  7. Zhigilei, L.V., Lin, Z., and Ivanov, D.S., J. Phys. Chem. C, 2009, vol. 113, no. 27, p. 11 892.

    Article  Google Scholar 

  8. Rethfeld, B., Ivanov, D.S., Garcia, M.E., and Anisimov, S.I., J. Phys. D: Appl. Phys., 2017, vol. 50, p. 193001.

    Article  ADS  Google Scholar 

  9. Ionin, A.A., Kudryashov, S.I., and Samokhin, A.A., Phys.—Usp., 2017, vol. 60, no. 2, p. 149.

    Article  ADS  Google Scholar 

  10. Ashitkov, S.I., Komarov, P.S., Ovchinnikov, A.V., Struleva, E.V., Zhakhovskii, V.V., Inogamov, N.A., and Agranat, M.B., Quantum Electron., 2014, vol. 44, no. 6, p. 535.

    Article  ADS  Google Scholar 

  11. Temnov, V.V., Zhou, P., and Linde, D., J. Opt. Soc. Am., 2006, vol. 23, no. 9, p. 1954.

    Article  ADS  Google Scholar 

  12. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2019, vol. 57, no. 4, p. 529.

    Google Scholar 

  13. Kerley, G.I., Equations of State for Titanium and Ti6A14V Alloy, Report SAND 2003-3785, Albuquerque, NM: Sandia Natl. Lab., 2003.

  14. Artyukov, I.A., Zayarniy, D.A., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., and Saltuganov, P.N., JETP Lett., 2014, vol. 99, no. 1, p. 51.

    Article  ADS  Google Scholar 

  15. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2018, vol. 56, no. 5, p. 648.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00697.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Struleva.

Ethics declarations

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struleva, E.V., Komarov, P.S., Romashevskiy, S.A. et al. Dynamics of Ablation Plume of Titanium Target under Femtosecond Laser Exposure. High Temp 58, 148–150 (2020). https://doi.org/10.1134/S0018151X20010204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20010204

Navigation