Skip to main content
Log in

Temperature Dependence of Electrical Resistance of Graphene Oxide

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The temperature dependence of the electrical resistance of graphene oxide upon continuous heating and cooling under argon in the temperature range of 300–550 K and the Raman scattering spectra are studied. In the range 300–370 K, the resistance is constant during the cooling process and is thermostable under subsequent heating. The temperature dependence of the resistance in the 370–550 K range varies according to the activation law. The decrease in resistance with increasing temperature is associated with the removal of functional oxygen-containing groups, which is confirmed by the Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Singh, V., Joung, D., Zhai, L., Das, S., Khodaker, S.I., and Seal, S., Prog. Mater. Sci., 2011, vol. 56, p. 1178.

    Article  Google Scholar 

  2. Pei, S. and Cheng, H.-M., Carbon, 2012, vol. 50, p. 3210.

    Article  Google Scholar 

  3. Stankovich, S., Dikin, D., Finer, R.D., et al., Carbon, 2007, vol. 45, p. 1558.

    Article  Google Scholar 

  4. Allen, M.J., Tung, V.C., and Kaner, R.B., Chem. Rev., 2010, vol. 110, p. 132.

    Article  Google Scholar 

  5. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., and Song, Y.I., Nat. Nanotechnol., 2010, vol. 5, no. 8, p. 574.

    Article  ADS  Google Scholar 

  6. Novoselov, K., Fal’co, V., Colombo, L., Gellert, P., Schwab, M., and Kim, K., Nature, 2012, vol. 490, p. 192.

    Article  ADS  Google Scholar 

  7. Offeman R., Hummers W., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

  8. Bao, Q., Eda, G., and Chhowalla, M., Nat. Chem., 2010, vol. 2, no. 12, p. 1015.

    Article  Google Scholar 

  9. Park, S. and Ruoff, R.S., Nat. Nanotechnol., 2009, vol. 4, no. 4, p. 217.

    Article  ADS  Google Scholar 

  10. Chen, W. and Yan, L., Nanoscale, 2010, vol. 2, p. 559.

    Article  ADS  Google Scholar 

  11. Eda, G., Fanchini, G., and Chhowalla, M., Nat. Nanotechnol., 2008, vol. 3, no. 5, p. 270.

    Article  Google Scholar 

  12. Soldano, C., Mahmood, A., and Dujardin, E., Carbon, 2010, vol. 48, no. 8, p. 2127.

    Article  Google Scholar 

  13. Brodie, B.C., Ann. Chim. Phys., 1860, vol. 59, p. 466.

    Google Scholar 

  14. Tkachev, S.V., Buslaeva, E.Yu., Naumkin, A.V., Kotova, S.L., Laure, I.V., and Gubin, S.P., Inorg. Mater., 2012, vol. 48, no. 8, p. 796.

    Article  Google Scholar 

  15. Beams, R., Cançado, L.G., and Novotny, L., J. Phys.: Condens. Matter, 2015, vol. 27, 083002.

    ADS  Google Scholar 

  16. Nemanich, R.J. and Solin, S.A., Phys. Rev. B: Condens. Matter Mater. Phys., 1979, vol. 20, p. 392.

    Article  ADS  Google Scholar 

  17. Ni, Z.H., Chen, W., Fan, X.F., Kuo, J.L., Yu, T., Wee, A.T.S., and Shen, Z.X., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, 115416.

    Article  ADS  Google Scholar 

  18. Jorio, A., Souza Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Pimenta, M.A., Hafner, J.H., Lieber, C.M., and Saito, R., Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, 155412.

    Article  ADS  Google Scholar 

  19. Thomsen C., Reich S., Phys. Rev. Lett., 2000, vol. 85, p. 5214.

  20. Das A., Chakraboty, B. and Sood, A.K., Bull. Mater. Sci., 2008, vol. 31, p. 579.

    Article  Google Scholar 

  21. Saito, R., Jorio, A., Souza Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., and Pimenta, M.A., Phys. Rev. Lett., 2001, vol. 88, 027401.

    Article  ADS  Google Scholar 

  22. Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cançado, L.G., Jorio, A., and Saito, R., Phys. Chem. Chem. Phys., 2007, vol. 9, p. 1276.

    Article  Google Scholar 

  23. Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., and Casiraghi, C., Nano Lett., 2012, vol. 12, p. 3925.

    Article  ADS  Google Scholar 

  24. Lucchese, M.M., Stavale, F., Martins Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., and Jorio, A., Carbon, 2010, vol. 48, p. 1592.

    Article  Google Scholar 

  25. Cancado, L.G., Jorio, A., Martins Ferreira, E.H., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., and Ferrari, A.C., Nano Lett., 2001, vol. 11, p. 3190.

    Article  ADS  Google Scholar 

  26. Lespade, P., Marchand, A., Couzi, M., and Cruege, F., Carbon, 1984, vol. 22, p. 375.

    Article  Google Scholar 

  27. Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K.S., Basko, D.M., and Ferrari, A.C., Nano Lett., 2009, vol. 9, p. 1433.

    Article  ADS  Google Scholar 

  28. Beams, R., Cançado, L.G., and Novotny, L., Nano Lett., 2011, vol. 11, p. 1177.

    Article  ADS  Google Scholar 

  29. Cançado, L.G., Pimenta, M.A., Neves, B.R.A., Dantas, M.S.S., and Jorio, A., Phys. Rev. Lett., 2004, vol. 93, 247401.

    Article  ADS  Google Scholar 

  30. Díez-Betriu, X., Álvarez-García, S., Botas, C., et al., J. Mater. Chem. C, 2013, vol. 41, p. 6905.

    Article  Google Scholar 

  31. Kudin, K.N., Ozbas, B., Schniepp, H.C., et al., Nano Lett., 2008, vol. 8, p. 36.

    Article  ADS  Google Scholar 

  32. Alexandrov, G.N., Smagulova, S.A., Kapitonov, A.N., Vasil’eva, F.D., Kurkina, I.I., Vinokurov, P.V., Timofeev, V.B., and Antonova, I.V., Nanotechnol. Russ., 2014, vol. 9, nos. 7–8, p. 363.

    Article  Google Scholar 

  33. Lucchese, M.M., Stavale, F., Martins Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., and Jorio, A., Carbon, 2010, vol. 48, p. 1592.

    Article  Google Scholar 

  34. Yang K., Hè K., Wang Y., Yu T., Carbon, 2013, vol. 52, p. 528.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Babaev.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaev, A.A., Zobov, M.E., Kornilov, D.Y. et al. Temperature Dependence of Electrical Resistance of Graphene Oxide. High Temp 57, 198–202 (2019). https://doi.org/10.1134/S0018151X19020019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19020019

Navigation