Skip to main content
Log in

New Estimate of Osmium Melting Heat

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The value of the osmium melting heat, ΔHm= 57.85 kJ/mol, presented in reference handbooks was obtained about 35 years ago from a wide extrapolation (in temperature) of experimental data on the melting entropy of the FCC and the HCP elements of the Periodic Table. Using the correlation of data on the surface tension (developed by B. D. Summ), the melting heat, and the surface layer structure for osmium, the authors obtain a new estimate, ΔHm = 30−40 kJ/mol, which is half of the reference value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dinsdale, A.T., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1991, vol. 15,no. 4, p. 317.

    Article  Google Scholar 

  2. CRC Handbook of Chemistry and Physics, Haynes, W.M., Ed., ch. 12: Thermal and Physical Properties of Metals, Boca Raton: CRC, 2014, 94th ed.

  3. Arblaster, J.W., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1995, vol. 19,no. 3, p. 349.

    Article  Google Scholar 

  4. Chekhovskoi, V.Ya., Obz. Teplofiz. Svoistvam Veshchestv, 1979, no. 6.

    Google Scholar 

  5. Katz, S.A. and Chekhovskoi, V.Ya., High Temp.—High Pressures, 1979, vol. 11,no. 6, p. 629.

    Google Scholar 

  6. Kats, S.A. and Chekhovskoi, V.Ya., Zh. Fiz. Khim., 1980, vol. 54,no. 3, p. 768.

    Google Scholar 

  7. Pottlacher, G., Neger, T., and Jäger, H., Int. J. Thermophys., 1986, vol. 7,no. 1, p. 149.

    Article  ADS  Google Scholar 

  8. Dolomanov, L.A., Kovalev, K.S., Lebedev, S.V., and Savvatimskii, A.I., Teplofiz. Vys. Temp., 1988, vol. 26,no. 3, p. 492.

    Google Scholar 

  9. Hixson, R.S. and Winkler, M.A., Int. J. Thermophys., 1992, vol. 13,no. 3, p. 477.

    Article  ADS  Google Scholar 

  10. Thevenin, Th., Arles, L., Boivineau, M., and Vermeulen, J.M., Int. J. Thermophys., 1993, vol. 14,no. 3, p. 441.

    Article  ADS  Google Scholar 

  11. Lin, R. and Frohberg, M.G., High Temp.—High Pressures, 1992, vol. 24,no. 5, p. 537.

    Google Scholar 

  12. Saunders, N., Miodownic, A.P., and Dinsdale, A.T., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1988, vol. 12,no. 4, p. 351.

    Article  Google Scholar 

  13. Dinsdale, A.T., SGTE data for pure elements, Landolt-Bornstein, New Series, Group IV: Physical Chemistry, 1999, vol. 19B, Elements, p. 1.

    Google Scholar 

  14. Chekhovskoi, V.Ya. and Ramanauskas, G.R., Obz. Teplofiz. Svoistvam Veshchestv, 1989, no. 4.

    Google Scholar 

  15. Fizicheskaya khimiya neorganicheskikh materialov(Physical Chemistry of Inorganic Materials), vol. 2: Poverkhnostnoe natyazhenie i termodinamika metallicheskikh rasplavov (Surface Tension and Thermodynamics of Metal Melts), Eremenko, V.N., Ed., Kiev: Naukova Dumka, 1988.

  16. Paradis, P.-F., Ishikawa, T., and Koike, N., J. Appl. Phys., 2006, vol. 100,no. 10, 103523.

    Article  ADS  Google Scholar 

  17. DiMasi, E., Tostmann, H., Osko, B.M., et al., Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 58,no. 20, p. R13419.

    Article  ADS  Google Scholar 

  18. González, D.J., González, L.E., and Stott, M.J., Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74,no. 1, 014207.

    Article  ADS  Google Scholar 

  19. Summ, B.D., Vestn. Mosk. Univ., Ser. 2: Khim., 1999, vol. 40,no. 5, p. 400.

    Google Scholar 

  20. Gelfond, N.V., Morozova, N.B., Filatov, U.S., et al., J. Struct. Chem., 2009, vol. 50,no. 6, p. 1126.

    Article  Google Scholar 

  21. Svoistva elementov(Properties of Elements)], part 1: Fizicheskie svoistva(Physical Properties), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1

    Google Scholar 

  22. Kulyamina, E.Yu., Zitserman, V.Yu., and Fokin, L.R., High Temp., 2015, vol. 53,no. 1, p. 151.

    Article  Google Scholar 

  23. Kulyamina, E.Yu., Zitserman, V.Yu., and Fokin, L.R., Tech. Phys., 2017, vol. 62,no. 1, p. 68.

    Article  Google Scholar 

  24. Tsagareishvili, D.I., Metody rascheta termicheskikh i uprugikh svoistv kristallicheskikh neorganicheskikh veshchestv(Methods for Calculating the Thermal and Elastic Properties of Crystalline Inorganic Substances), Tbilisi: Metsniereba, 1977.

    Google Scholar 

  25. Burakovsky, L., Burakovsky, N., and Preston, D.L., Phys. Rev. B: Condens. Matter Mater. Phys., 2015, vol. 92, 174102.

    Article  ADS  Google Scholar 

  26. Fokin, L.R., Kulymina, E.Yu., and Zitsermann, V.Yu., in Proc. XXI Int. Conf. on Chemical Thermodynamics in Russia, Novosibirsk, 2017, p. 208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Fokin.

Additional information

Russian Text © The Author(s), 2019, published in Teplofizika Vysokikh Temperatur, 2019, Vol. 57, No. 1, pp. 61–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokin, L.R., Kulyamina, E.Y. & Zitserman, V.Y. New Estimate of Osmium Melting Heat. High Temp 57, 54–57 (2019). https://doi.org/10.1134/S0018151X19010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19010073

Navigation