Skip to main content
Log in

Thermophysical Properties of Boron Carbide Irradiated by Ionizing Radiation

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Differential-scanning calorimetry is used to study the thermophysical properties of boron carbide irradiated by the ionizing radiation from the 60Co source. With increased temperature, the heat capacity and entropy values of nonirradiated and irradiated B4C specimens increase. At high temperatures (723–1300 K), the character of variation of the enthalpy and the Gibbs’ potential of the irradiated B4C specimen depends on the presence of oxygen. The values of the thermodynamic functions vary due to the formation of excited atoms, active centers, defects of the B4C crystal structure, and B4C oxidation in the presence of the air oxygen after the ampoule opening. Also possible is an increase, at 723–1300 K, in the rate of oxidation of the boron carbide surface (contacting with the air oxygen), where the defects that form upon irradiation are distributed. At temperatures above 723 K, melting of the oxygenated part (B2O3) in B4C specimens irradiated by the absorbed dose of 194 Gy is observed; that process continued until the transformation of ~26% of crystal structure into the amorphous phase at 1300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGregor, D.S., Gersch, H.K., Sanders, J.D., Klann, R.T., and Lindsay, J.T., J. Korean Assoc. Radiat. Prot., 2001, vol. 26, p. 167.

    Google Scholar 

  2. McGregor, D.S., Klann, R.T., Gersch, H.K., and Yang, Y.-H., Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vol. 466, p. 126.

    Article  ADS  Google Scholar 

  3. De Lurgio, P.M., Klann, R.T., Fink, C.L., McGregor, D.S., Thiyagarajan, P., and Naday, I., Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 505, p. 46.

    Article  ADS  Google Scholar 

  4. McGregor, D.S., Hammig, M.D., Gersch, H.K., Yang, Y.-H., and Klann, R.T., Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 500, p. 272.

    Article  ADS  Google Scholar 

  5. McGregor, D.S. and Shultis, J.K., Nucl. Instrum. Methods Phys. Res., Sect. A, 2004, vol. 517, p. 180.

    Article  ADS  Google Scholar 

  6. Fleta, C., Guardiola, C., Esteban, S., Jumilla, C., Pellegrini, G., Quirion, D., Rodríguez, J., Lousa, A., Martínez-de-Olcoz, L., and Lozano, M., J. Instrum., 2014, vol. 9, 04010.

    Google Scholar 

  7. Guardiola, C., Fleta, C., Pellegrini, G., García, F., Quirion, D., Rodríguez, J., and Lozano, M., J. Instrum., 2012, vol. 7, 03006.

    Article  Google Scholar 

  8. Höglund, C., Birch, J., Andersen, K., et al., J. Appl. Phys., 2012, vol. 111, 104908.

    Article  ADS  Google Scholar 

  9. Nowak, G., Störmer, M., Becker, H.-W., et al., Appl. Phys., 2015, vol. 117, 034901.

    Article  Google Scholar 

  10. Emin, D. and Aselage, T.L., J. Appl. Phys., 2005, vol. 97, 013529.

    Article  ADS  Google Scholar 

  11. Robertson, B.W., Adenwalla, S., Harken, A., Welsch, P., Brand, J.I., Dowben, P.A., and Claassen, J.P., Appl. Phys. Lett., 2002, vol. 80, no. 19, p. 3644.

    Article  ADS  Google Scholar 

  12. Domnich, V., Reynaud, S., Haber, R.A., and Chhowalla, M., J. Am. Ceram. Soc., 2011, vol. 94, no. 11, p. 3605.

    Article  Google Scholar 

  13. Fokin, L.R., High Temp., 2015, vol. 53, no. 2, p. 206.

    Article  Google Scholar 

  14. Karumidze, G.S. and Shengelia, L.A., Diamond Relat. Mater., 1993, vol. 3, p. 14.

    Article  ADS  Google Scholar 

  15. Rutkowskia, P., Dubiela, A., Piekarczykb, W., Magdalena, Z., and Duszaca, J., J. Eur. Ceram. Soc., 2015, vol. 20, p. 7.

    Google Scholar 

  16. Tsagareishvili, G.V., Nakashidze, T.G., Jobava, J.Sh., Lomidze, G.P., Khulelidze, D.E., Tsagareishvili, D.Sh., and Tsagareishvili, O.A., J. Less-Common Met., 1986, vol. 117, p. 159.

    Article  Google Scholar 

  17. Wood, Ch., Emin, D., and Gray, P.E., Phys. Rev. B: Condens. Matter Mater. Phys., 1985, vol. 31, no. 10, p. 6811.

    Article  ADS  Google Scholar 

  18. Kittel, C. and Kroemer, H., Thermal Physics, San Francisco, CA: W. H. Freeman, 1980.

    Google Scholar 

  19. Kiliçarslan, A., Toptan, F., Kerti, I., and Piskin, S., Mater. Lett., 2014, vol. 128, p. 224.

    Article  Google Scholar 

  20. Li, Y.Q. and Qiu, T., Mater. Sci. Eng., 2007, p. 184.

    Google Scholar 

  21. Schick, C., Anal. Bioanal. Chem., 2009, vol. 395, no. 6, p. 1589.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Mirzayev.

Additional information

Original Russian Text © M.N. Mirzayev, Kh.F. Mammadov, R.G. Garibov, E.B. Askerov, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 3, pp. 390–394.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzayev, M.N., Mammadov, K.F., Garibov, R.G. et al. Thermophysical Properties of Boron Carbide Irradiated by Ionizing Radiation. High Temp 56, 374–377 (2018). https://doi.org/10.1134/S0018151X18030161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18030161

Navigation