High Temperature

, Volume 56, Issue 1, pp 1–9 | Cite as

Structure of the Welding Arc Cathode Spot with a Nonconsumable Electrode

  • A. E. Balanovskii
Plasma Investigations


The cathode spot autographs on a glass surface are investigated through an electron microscope, with a magnification up to 100000. We discover that the welding arc cathode spot consists of separate cells with the substructure, current channels, 10–60 nm in diameter. We acquire color photographs of the welding arc cathode spot with the cathode torch. Photograph processing through different filters reveals the shape of the cathode spot and the cathode torch. We perform the estimate calculations of the current density in the welding arc cathode spot substructure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balanovskii, A.E., High Temp., 2016, vol. 54, no. 5, p. 627.CrossRefGoogle Scholar
  2. 2.
    Leskov, V.G., Elektricheskaya svarochnaya duga. Moscow: Mashinostroenie, 1970.Google Scholar
  3. 3.
    Mazel’, A.G., Tekhnologicheskie svoistva svarochnoi dugi (Technological Properties of Electric Welding Arc), Moscow: Mashinostroenie, 1969.Google Scholar
  4. 4.
    Lenivkin, V.A., Dyurgerov, N.G., and Sagirov, Kh.N., Tekhnologicheskie svoistva svarochnoi dugi v zashchitnykh gazakh (Technological Properties of the Welding Arc in Shielding Gases), Moscow: Mashinostroenie, 1989.Google Scholar
  5. 5.
    Kesaev, I.G., Katodnye protsessy elektricheskoi dugi (Cathodic Processes of an Electric Arc), Moscow: Nauka, 1968.Google Scholar
  6. 6.
    Anders, A., Cathodic Arcs: From Fractal Spots to Energetic Condensation, New York: Springer, 2008.CrossRefGoogle Scholar
  7. 7.
    Mesyats, G.A., Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark, and the Arc, Moscow: Nauka, 2000.Google Scholar
  8. 8.
    Rakhovskii, V.I., Fizicheskie osnovy kommutatsii elektricheskogo toka v vakuume (Physical Basis of Commutation of Electric Current in Vacuum), Moscow: Nauka, 1970.Google Scholar
  9. 9.
    Vacuum Arcs: Theory and Application, Lafferty, J.M., Ed., New York: Wiley, 1980.Google Scholar
  10. 10.
    Jüttner, B., Phys. C (Amsterdam, Neth.), 1982, vol. 114, p. 225.Google Scholar
  11. 11.
    Jüttner, B., IEEE Trans. Plasm. Sci., 1999, vol. 27, p. 836.ADSCrossRefGoogle Scholar
  12. 12.
    Vogel, N. and Jüttner, B., J. Phys. D: Appl. Phys., 1991, vol. 24, p. 922.ADSCrossRefGoogle Scholar
  13. 13.
    Jüttner, B., J. Phys. D: Appl. Phys., 1995, vol. 28, p. 516.ADSCrossRefGoogle Scholar
  14. 14.
    Jüttner, B. and Kleberg, I., J. Phys. D: Appl. Phys., 2000, vol. 33, p. 2025.ADSCrossRefGoogle Scholar
  15. 15.
    Jüttner, B., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 103.CrossRefGoogle Scholar
  16. 16.
    Lyubimov, G.A. and Rakhovskii, V.I., Phys.—Usp., 1978, vol. 21, no. 8, p. 693.ADSCrossRefGoogle Scholar
  17. 17.
    Beilis, I.I., Teplofiz. Vys. Temp., 1977, vol. 15, no. 5, p. 965.Google Scholar
  18. 18.
    Ekker, G., Teplofiz. Vys. Temp., 1978, vol. 16, no. 6, p. 1297.Google Scholar
  19. 19.
    Puchkarev, V.E. and Myrzakaev, N.M., J. Phys. D: Appl. Phys., 1990, vol. 23, p. 26.ADSCrossRefGoogle Scholar
  20. 20.
    Norin, P.A., Tret’yakov, A.Yu., and Malyshev, I.N., Svar. Proizvod., 2001, no. 9, p. 3.Google Scholar
  21. 21.
    Minaichev, V.E., Nanesenie plenok v vakuume (Application of Films in Vacuum), Moscow: Vysshaya Shkola, 1989.Google Scholar
  22. 22.
    Balanovskii, A.E., Svar. Proizvod., 2016, no. 6, p. 31.Google Scholar
  23. 23.
    Gromov, D.S., Gavrilov, S.A., Redichev, E.N., and Ammosov, R.M., Phys. Solid State, 2007, vol. 49, no. 1, p. 178.ADSCrossRefGoogle Scholar
  24. 24.
    Daalder, J.E., J. Phys. D: Appl. Phys., 1983, vol. 16, p. 17.ADSCrossRefGoogle Scholar
  25. 25.
    Daalder, J.E., J. Phys. D: Appl. Phys., 1976, vol. 9, p. 2379.ADSCrossRefGoogle Scholar
  26. 26.
    Daalder, J.E., J. Phys. D: Appl. Phys., 1979, vol. 12, p. 1769.ADSCrossRefGoogle Scholar
  27. 27.
    Daalder, J.E., J. Phys. D: Appl. Phys., 1975, vol. 8, p. 1647.ADSCrossRefGoogle Scholar
  28. 28.
    Balanovskii, A.E., Teplofiz. Vys. Temp., 1993, vol. 31, no. 2, p. 328.Google Scholar
  29. 29.
    Zubarev, N.M. and Zubareva, O.V., Tech. Phys., 2001, vol. 46, no. 7, p. 806.CrossRefGoogle Scholar
  30. 30.
    Ben-Yakar, A., Byer, R., Harkin, A., Ashmore, Ja., Stone, H.A., Shen, M., and Mazur, E., Appl. Phys. Lett., 2003, vol. 83, p. 3030.ADSCrossRefGoogle Scholar
  31. 31.
    Ashitkov, S.I., Romashevskii, S.A., Komarov, P.S., Burmistrov, A.A., Zhakhovskii, V.V, Inogamov, N.A., and Agranat, M.B., Quantum Electron., 2015, vol. 45, no. 6, p. 547.ADSCrossRefGoogle Scholar
  32. 32.
    Wang, S.Y., Ren, Y.P., Chang, K.P., and Cheng, C.W., J. Laser Micro/Nanoeng., 2014, vol. 9, p. 88.CrossRefGoogle Scholar
  33. 33.
    Ashitkov, S.I., Inogamov, N.A., Zhakhovskii, V.V., Emirov, Yu.N., Agranat, M.B., Oleinik, I.I., Anisimov, S.I., and Fortov, V.E., JETP Lett., 2012, vol. 95, no. 4, p. 176.ADSCrossRefGoogle Scholar
  34. 34.
    Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Yurkevich, A.A., and Agranat, M.B., High Temp., 2016, vol. 54, no. 6, p. 899.CrossRefGoogle Scholar
  35. 35.
    Romashevskiy, S.A., Agranat, M.B., and Dmitriev, A.S., High Temp., 2016, vol. 54, no. 3, p. 461.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Irkutsk National Research Technical UniversityIrkutskRussia

Personalised recommendations