Skip to main content
Log in

Nanocarbon materials: Physicochemical and exploitation properties, synthesis methods, and enegretic applications

  • Review
  • Published:
High Temperature Aims and scope

Abstract

The development of studies on the preparation, physicochemical properties, and possible applications of carbon nanomaterials in power manufacturing, conversion, and storage systems is analyzed in this review. The authors continue to study the problem of systematization and attestation of numerical data for nanoscale objects and pay special attention to the properties of carbon structures that show the highest application potential and already occupy a definite niche in the nanotechnology market. The features of contemporary systems for power manufacturing, conversion, and storage are considered in detail from the viewpoint of possible application of nanocarbon materials in these systems including the dependence of power device parameters on the complex of nanomaterial properties and details of its structure and synthesis technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of the Ninth Asian Thermophysical Properties Conference (ATPC2010), Beijing, China, October 19–22, 2010, Beijing, 2010. http://www1.ustb.edu.cn/atpc2010/.

  2. International Journal of Thermophysics, December 2013, issue 12 (Special Conference Issue: Selected Papers of the Ninth Asian Thermophysical Properties Conference). http://link.springer.com/journal/10765/34/12/page/1.

  3. Program Book of the Tenth Asian Thermophysical Properties Conference (ATPC2013), Jeju, Korea, September 29–October 3, 2013, Jeju, 2013. www.atpc2013.org.

  4. Gorbatov, V.I., Polev, V.F., Pilyugin, V.P., Korshunov, I.G., Smirnov, A.L., Taluts, S.G., and Brytkov, D.A., High Temp., 2013, vol. 51, no. 4, p. 482.

    Article  Google Scholar 

  5. Koverda, V.P., Skokov, V.N., and Vinogradov, A.V., High Temp., 2013, vol. 51, no. 3, p. 421.

    Article  Google Scholar 

  6. Kostanovskii, A.V., Pronkin, A.A., and Kirichenko, A.N., High Temp., 2013, vol. 51, no. 5, p. 712.

    Article  Google Scholar 

  7. Erkimbaev, A.O., Zitserman, V.Yu., and Kobzev, G.A., High Temp., 2010, vol. 48, no. 6, p. 830.

    Article  Google Scholar 

  8. Eletskii, A.V., Erkimbaev, A.O., Zitserman, V.Yu., Kobzev, G.A., and Trakhtengerts, M.S., High Temp., 2012, vol. 50, no. 4, p. 488.

    Article  Google Scholar 

  9. Ross. Nanotekhnol., 2009, vol. 4, nos. 11–12, p. 8.

    Google Scholar 

  10. Jiang, H., Lee, P.S., and Li, C., Energy Environ. Sci., 2013, vol. 6, p. 41.

    Article  Google Scholar 

  11. Dai, L., Chang, D.W., Baek, J.-B., and Lu, W., Small, 2012, vol. 8, p. 1130.

    Article  ADS  Google Scholar 

  12. Zhang, J. and Zhao, X.S., ChemSusChem, 2012, vol. 5, p. 818.

    Article  Google Scholar 

  13. Zhao, G., Wen, T., Chen, C., and Wang, X., R. Soc. Chem. Adv., 2012, vol. 2, p. 9286.

    Google Scholar 

  14. Edwards, R.S. and Coleman, K.S., Nanoscale, 2013, vol. 5, p. 38.

    Article  ADS  Google Scholar 

  15. Ghosh, A. and Lee, Y.H., ChemSusChem, 2012, vol. 5, p. 480.

    Article  Google Scholar 

  16. Huang, Y., Liang, J., and Chen, Y., Small, 2012, vol. 8, p. 1805.

    Article  Google Scholar 

  17. Huang, X., Zeng, Z., Fan, Z., Liu, J., and Zhang, H., Adv. Mater., 2012, vol. 24, p. 5979.

    Article  Google Scholar 

  18. Kuila, T., Mishra, A.K., Khanra, P., Kim, N.H., and Lee, J.H., Nanoscale, 2013, vol. 5, p. 52.

    Article  ADS  Google Scholar 

  19. Luo, B., Liu, S., and Zhi, L., Small, 2012, vol. 8, p. 630.

    Article  Google Scholar 

  20. Pumera, M., Energy Environ. Sci., 2011, vol. 4, p. 668.

    Article  Google Scholar 

  21. Sun, Y. and Shi, G., J. Polym. Sci., Part B: Polym. Phys., 2013, vol. 51, p. 231.

    Article  ADS  Google Scholar 

  22. Sun, Y., Wu, Q., and Shi, G., Energy Environ. Sci., 2011, vol. 4, p. 1113.

    Article  Google Scholar 

  23. Vilatela, J.J. and Eder, D., ChemSusChem, 2012, vol. 5, p. 456.

    Article  Google Scholar 

  24. Wan, X., Huang, Y., and Chen, Y., Acc. Chem. Res., 2012, vol. 45, p. 598.

    Article  Google Scholar 

  25. Xu, P.T., Yang, J.X., Wang, K.S., Zhou, Z., and Shen, P.W., Chin. Sci. Bull., 2012, vol. 57, p. 2948.

    Article  Google Scholar 

  26. Zhai, Y., Dou, Y., Fulvio, P.F., Mayes, R.T., Zhao, D., and Dai, S., Adv. Mater. (Weinheim), 2011, vol. 23, p. 4828.

    Article  Google Scholar 

  27. Eletskii, A.V., Phys.—Usp., 2004, vol. 47, no. 11, p. 1191.

    Article  Google Scholar 

  28. Sorokin, P.B. and Chernozatonskii, L.A., Phys.—Usp., 2013, vol. 56, no. 2, p. 105.

    Article  ADS  Google Scholar 

  29. Eletskii, A.V., Phys.—Usp., 2009, vol. 52, no. 3, p. 209.

    Article  ADS  Google Scholar 

  30. Eletskii, A.V., Phys.—Usp., 2002, vol. 45, no. 4, p. 369.

    Article  ADS  Google Scholar 

  31. Eletskii A.V. Phys.—Usp., 2010, vol. 53, no. 9, p. 863.

    Article  ADS  Google Scholar 

  32. Brown, E., Ling, H., Gallop, J.C., and Macfarlane, J.C., Appl. Phys. Lett., 2005, vol. 87, p. 023107.

    Article  ADS  Google Scholar 

  33. Eletskii, A.V., Iskandarova, I.M., Knizhnik, A.A., and Krasikov, D.N., Phys.—Usp., 2011 vol. 54, no. 3, p. 227.

    Article  ADS  Google Scholar 

  34. Ghosh S., Bao W., Nika D.L., Subrina S., Pokatilov E.P., Lau C.N., and Balandin, A.A., Nat. Mater., 2010, vol. 9, p. 555.

    Article  ADS  Google Scholar 

  35. Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H., Nano Lett., 2006, vol. 6, p. 96.

    Article  ADS  Google Scholar 

  36. Sariciftci, N., Braun, D., Zhang, C., Srdanov, V., Heeger, A., Stucky, G., and Wudl, F., Appl. Phys. Lett., 1993, vol. 62, p. 585.

    Article  ADS  Google Scholar 

  37. Lee, C., Yu, G., Moses, D., Pakbaz, K., Zhang, C., Sariciftci, N., Heeger, A., and Wudl, F., Phys. Rev. B, 1993, vol. 48, p. 15425.

    Article  ADS  Google Scholar 

  38. Yu, G., Pakbaz, V., and Heeger, A.J., Appl. Phys. Lett., 1994, vol. 64, p. 3422.

    Article  ADS  Google Scholar 

  39. Morita, S., Zakhidov, A.A., and Yoshino, K., Jpn. J. Appl. Phys., 1993, vol. 32, p. L873.

    Article  ADS  Google Scholar 

  40. Zakhidov, A., Taka, K., and Yoshino, K., Synth. Met., 1995, vol. 71, p. 2113.

    Article  Google Scholar 

  41. Zakhidov, A. and Yoshino, K., Synth. Met., 1995, vol. 71, p. 1875.

    Article  Google Scholar 

  42. Kohler, A., Wittmann, H., Friend, R., Khan, M., and Lewis, J., Synth. Met., 1996, vol. 77, p. 147.

    Article  Google Scholar 

  43. Electropaedia: Battery and Energy Technologies. http://www.mpoweruk.com/.

  44. Burke, A. and Arulepp, M., Electrochem. Soc. Proc., 2001, vol. 21, p. 576.

    Google Scholar 

  45. Niu, C., Sichel, E.K., Hoch, R., Moy, D., and Tennent, H., Appl. Phys. Lett., 1997, vol. 70, p. 1480.

    Article  ADS  Google Scholar 

  46. Tsai, W.-Y., Lin, R., Murali, S., Zhang, L.L., McDonough, J.K., Ruoff, R.S., Taberna, P.-L., Gogotsi, Y., and Simon, P., Nano Energy, 2013, vol. 2, p. 403.

    Article  Google Scholar 

  47. Du, F., Yu, D., Dai, L., Ganguli, S., Varshney, V., and Roy, A.K., Chem. Mater., 2011, vol. 23, p. 4810.

    Article  Google Scholar 

  48. Zhang, C., Peng, Z., Lin, J., Zhu, Y., Ruan, G., Hwang, C.-C., Lu, W., Hauge, R.H., and Tour, J.M., ACS Nano, 2013, vol. 7, no. 6, p. 5151.

    Article  Google Scholar 

  49. Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., and Wei, F., Carbon, 2010, vol. 48, p. 487.

    Article  Google Scholar 

  50. Li, J., Xie, H., Li, Y., Liu, J., and Li, Z., J. Power Sources, 2011, vol. 196, p. 10775.

    Article  Google Scholar 

  51. Wang, H., Hao, Q., Yang, X., Lu, L., and Wang, X., Nanoscale, 2010, vol. 2, p. 2164.

    Article  ADS  Google Scholar 

  52. Luo, J., Jang, H.D., and Huang, J., ACS Nano, 2013, vol. 7, no. 2, p. 1464.

    Article  Google Scholar 

  53. Romero, D.B., Carrard, M., De Heer, W., and Zuppiroli, L., Adv. Mater. (Weiheim), 1996, vol. 8, p. 899.

    Article  Google Scholar 

  54. Curran, S.A., Ajayan, P.M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Davey, A.P., Drury, A., McCarthy, B., Maier, S., and Strevens, A., Adv. Mater. (Weiheim), 1998, vol. 10, p. 1091.

    Article  Google Scholar 

  55. Coleman, J.N., Curran, S., Dalton, A., Davey, A., McCarthy, B., Blau, W., and Barklie, R., Phys. Rev. B, 1998, vol. 58, p. 7492.

    Article  ADS  Google Scholar 

  56. Wu, W., Li, J., Liu, L., Yanga, L., Guo, Z.X., Dai, L., and Zhu, D., Chem. Phys. Lett., 2002, vol. 364, p. 196.

    Article  ADS  Google Scholar 

  57. Kymakis, E. and Amaratunga, G.A.J., Appl. Phys. Lett., 2002, vol. 80, p. 112.

    Article  ADS  Google Scholar 

  58. Jin, M.H.-C. and Dai L., Vertically Aligned Carbon Nanotubes for Photovoltaic Devices, Sun, S. and Sariciftci, N.S., Eds., Boca Raton, Florida, United States: CRC Press, 2005, p. 579.

  59. Wang, X., Zhi, L., and Müllen, K., Nano Lett., 2008, vol. 8, p. 323.

    Article  ADS  Google Scholar 

  60. Su, Q., Pang, S., Alijani, V., Li, C., Feng, X., and Müllen, K., Adv. Mater. (Weinheim), 2009, vol. 21, p. 3191.

    Article  Google Scholar 

  61. Tung, V.C., Chen, L.-M., Allen, M.J., Wassei, J.K., Nelson, K., Kaner, R.B., and Yang, Y., Nano Lett., 2009, vol. 9, p. 1949.

    Article  ADS  Google Scholar 

  62. Cai, D., Song, M., and Xu, C., Adv. Mater. (Weinheim), 2008, vol. 20, p. 1706.

    Article  Google Scholar 

  63. Yu, D., Yang, Y., Durstock, M., Baek, J.B., and Dai, L., ACS Nano, 2010, vol. 4, no. 9, p. 5633.

    Article  Google Scholar 

  64. Kamat, P.V., J. Phys. Chem. C, 2008, vol. 112, p. 18737.

    Article  Google Scholar 

  65. Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications, Dai, L., Ed., London: Elsevier, 2006.

    Google Scholar 

  66. Organic Photovoltaics: Mechanism, Materials, and Devices, Sun, S.S. and Sariciftci, N.S., Eds., Boca Raton, Florida, United States: CRC Press, 2005.

    Google Scholar 

  67. Farrow, B. and Kamat, P.V., J. Am. Chem. Soc., 2009, vol. 131, p. 11124.

    Article  Google Scholar 

  68. Hu, L., Zhao, Y.L., Ryu, K., Zhou, C., Stoddart, J.F., and Gruner, G., Adv. Mater. (Weinheim), 2008, vol. 20, p. 939.

    Article  Google Scholar 

  69. Robel, I., Bunker, B.A., and Kamat, P.V., Adv. Mater. (Weinheim), 2005, vol. 17, p. 2458.

    Article  Google Scholar 

  70. Sheeney-Haj-Ichia, L., Basnar, B., and Willner, I., Angew. Chem., Int. Ed., 2005, vol. 44, p. 78.

    Article  Google Scholar 

  71. Farrow, F. and Kamat, P.V., J. Am. Chem. Soc., 2008, vol. 130, p. 8890.

    Article  Google Scholar 

  72. Guldi, D.M., Rahman, G.M.A., Sgobba, V., Kotov, N.A., Bonifazi, D., and Prato, M., J. Am. Chem. Soc., 2006, vol. 128, p. 2315.

    Article  Google Scholar 

  73. Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., and Li, C.M., Angew. Chem., Int. Ed., 2010, vol. 49, p. 3014.

    Article  Google Scholar 

  74. Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., and Qu, L., Adv. Mater. (Weinheim), 2011, vol. 6, p. 776.

    Article  Google Scholar 

  75. Candelaria, S.L., Shao, Y., Zhou, W., Li, X., Xiao, J., Zhang, J.-G., Wang, Y., Liu, J., Li, J., and Cao, G., Nano Energy, 2012, vol. 1, p. 195.

    Article  Google Scholar 

  76. Ma, J., Fu, Y., Yu, B., and Zhang, J., J. Nanomater., 2013, vol. 2013, article ID 890197.

  77. Wang, G.X., Yao, J., Liu, H.K., and Dou, S.X., Met. Mater. Int., 2006, vol. 12, p. 413.

    Article  Google Scholar 

  78. Welna, D.T., Qu, L., Taylor, B.E., Dai, L., and Durstock, M.F., J. Power Sources, 2010, vol. 196, p. 1455.

    Article  Google Scholar 

  79. Sakamoto, J.S. and Dunn, B., J. Electrochem. Soc., 2002, vol. 149, p. A26.

    Article  Google Scholar 

  80. Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., and Wang, H., Electrochim. Acta, 2010, vol. 55, p. 3909.

    Article  Google Scholar 

  81. Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., and Li, Z.J., Chem. Mater., 2009, vol. 21, p. 3136.

    Article  Google Scholar 

  82. Yin, S., Zhang, Y., Kong, J., Zou, C., Li, C. M., Lu, X., Ma, J., Boey, F.Y.C., and Chen, X., ACS Nano, 2011, vol. 5, no. 5, p. 3831.

    Article  Google Scholar 

  83. Yoo, E., Kim, J., Hosono, E., Zhou, H.-S., Kudo, T., and Honma, I., Nano Lett., 2008, vol. 8, p. 2277.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eletskii.

Additional information

Original Russian Text © A.V. Eletskii, V.Yu. Zitserman, G.A. Kobzev, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 1, pp. 117–140.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eletskii, A.V., Zitserman, V.Y. & Kobzev, G.A. Nanocarbon materials: Physicochemical and exploitation properties, synthesis methods, and enegretic applications. High Temp 53, 130–150 (2015). https://doi.org/10.1134/S0018151X15010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15010034

Keywords

Navigation