Skip to main content
Log in

Numerical simulation of heating an aluminum film on two-layer graphene

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The behavior of a monolayer aluminum film on two-layer graphene upon heating from 300 to 3300 K was studied by the molecular dynamics method. A stretched film is nonuniformly contracted with an increase in temperature. Aluminum atoms remain on graphene even at 3300 K. Heating reduces stresses in the film plane. Upon heating to 3000 K, the long-range order in graphene is transformed into the mid-range one. The increase in the intensity of vertical displacements of C atoms in one graphene sheet (caused by an increase in temperature) generally reduces the corresponding intensity in the other sheet, whereas the horizontal components of mobility, with few exceptions, behave similarly. Upon heating, stresses in the upper graphene sheet decrease with different rates for different directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Q., Liu, Z., Zhang, X., Zhang, N., Yang, L., Yin, S., and Chen, Y., Appl. Phys. Lett., 2008, vol. 92, p. 223303.

    Article  ADS  Google Scholar 

  2. Hong, W.J., Xu, Y.X., Lu, G.W., Li, C., and Shi, G.Q., Electrochem. Commun., 2008, vol. 10, p. 1555.

    Article  Google Scholar 

  3. Liu, Z.F., Liu, Q., Huang, Y., Ma, Y.F., Yin, S.G., Zhang, X.Y., Sun, W., and Chen, Y.S., Adv. Mater., 2008, vol. 20, p. 3924.

    Article  Google Scholar 

  4. Hartley, O.N., Russell, R., Heasman, K.C., Mason, N.B., and Bruton, T.M., in The 29th International Electrical and Electronic Engineering (IEEE) Photovoltaic Specialists Conference (PVSC), New Orleans, Louisiana, United States, May 20–24, 2002, New Orleans, 2002, paper 103.2.

    Google Scholar 

  5. Novoselov, K.S., McCann, E., Morozov, S.V., Falko, V.I., Katsnelson, M.I., Zeitler, U., Jiang, D., Schedin, F., and Geim, A.K., Nat. Phys., 2006, vol. 2, p. 177.

    Article  Google Scholar 

  6. Stankus, S.V., Savchenko, I.V., Agadzhanov, A.Sh., Yatsuk, O.S., and Zhmurikov, E.I., High Temp., 2013, vol. 51, no. 2, p. 177.

    Article  Google Scholar 

  7. Basharin, A.Yu., Lysenko, I.Yu., and Turchaninov, M.A., High Temp., 2012, vol. 50, no. 4, p. 464.

    Article  Google Scholar 

  8. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Obergfell, D., Roth, S., Girit, C., and Zettl, A., Solid State Commun., 2007, vol. 143, p. 101.

    Article  ADS  Google Scholar 

  9. Gibertini, M., Tomadin, A., Polini, M., Fasolino, A., and Katsnelson, M.I., Phys. Rev. B, 2010, vol. 81, p. 125437.

    Article  ADS  Google Scholar 

  10. Tersoff, J., Phys. Rev. B, 1989, vol. 39, p. 5566.

    Article  ADS  Google Scholar 

  11. Stuart, S.J., Tutein, A.V., and Harrison, J.A., J. Chem. Phys., 2000, vol. 112, p. 6472.

    Article  ADS  Google Scholar 

  12. Rafii-Tabar, H., Phys. Rep., 2000, vol. 325, p. 239.

    Article  ADS  Google Scholar 

  13. Fang, T.-H. and Wu, J.-H., Comp. Mater. Sci, 2008, vol. 43, p. 785.

    Article  Google Scholar 

  14. Lee, W., Jang, S., Kim, M.J., and Myoung, J.-M., Nanotecnology, 2008, vol. 19, p. 85701.

    Article  ADS  Google Scholar 

  15. Yu, E.K., Stewart, D.A., and Tiwari, S., Phys. Rev. B, 2008, vol. 77, p. 195406.

    Article  ADS  Google Scholar 

  16. Wander, M.C.F. and Shuford, K.L., J. Phys. Chem., 2010, vol. 114, p. 20539.

    Article  Google Scholar 

  17. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, p. 3684.

    Article  ADS  Google Scholar 

  18. Davydov, S.Yu., Fiz. Tverd. Tela, 2012, vol. 54, no. 4, p. 875.

    Google Scholar 

  19. Chekhovskoi, V.Ya. and Peletsky, V.E., High Temp., 2011, vol. 49, no. 1, p. 45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, O.R. Rakhmanova, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 3, pp. 385–391.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E., Rakhmanova, O.R. Numerical simulation of heating an aluminum film on two-layer graphene. High Temp 52, 374–380 (2014). https://doi.org/10.1134/S0018151X14030110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14030110

Keywords

Navigation