Skip to main content
Log in

Molecular-dynamic analysis of fast heating of a mercury film on graphene

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Stepwise heating of a mercury film on graphene with Stone–Wales defects and hydrogenated edges is studied by the molecular dynamics methods at 800 K. Transformation of the film into a drop and its detachment from graphene is observed at a temperature of ∼700 K. The phonon spectra determined by horizontal and vertical atomic vibrations, the mobility coefficients of Hg atoms separated in directions, the density profile and radial distribution function of mercury, the angular distribution of nearest geometrical neighbors, the stress tensor of graphene, and the roughness of a graphene sheet are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galashev, A.E. and Rakhmanova, O.R., Phys.–Usp., 2014, vol. 57, no. 10, p. 970.

    Article  ADS  Google Scholar 

  2. Valota, A.T., Kinloch, I.A., Novoselov, K.S., Casiraghi, C., Eckmann, A., Hill, E.W., and Dryfe, R.A.W., 2D Mater., 2015, vol. 2, 024011. http://dx.doi.org/10.1088/2053-1583/2/2/024011

    Article  Google Scholar 

  3. Velicky, M., Bradley, D.F., Cooper, A.J., Hill, E.W., Kinloch, I.A., Mishchenko, A., Novoselov, K.S., Patten, H.V., Toth, P.S., Valota, A.T., Worrall, S.D., and Dryfe, R.A.W., ACS Nano, 2014, vol. 8, p. 10089.

    Article  Google Scholar 

  4. Lee, C.W., Serre, S.D., Zhao, Y., Lee, S.J., and Hastings, T.W., J. Air Waste Manage. Assoc., 2008, vol. 58, p. 484.

    Article  Google Scholar 

  5. Huggins, F.E., Yap, N., Huffman, G.P., and Senior, C.L., Fuel Process. Technol., 2003, vol. 82, p. 167.

    Article  Google Scholar 

  6. Hutson, N.D., Attwood, B.C., and Scheckel, K.G., Environ. Sci. Technol., 2007, vol. 41, p. 1747.

    Article  ADS  Google Scholar 

  7. Wilcox, J., Sasmaz, E., and Kirchofer, A., J. Air Waste Manage. Assoc., 2011, vol. 61, p. 418.

    Article  Google Scholar 

  8. Azamat, J., Khataee, A., and Joo, S.W., J. Mol. Graphics Modell., 2014, vol. 53, p. 112.

    Article  Google Scholar 

  9. Kim, H.W., Yoon, H.W., Yoon, S.-M., Yoo, B.M., Ahn, B.K., Cho, Y.H., Shin, H.J., Yang, H., Paik, U., Kwon, S., Choi, J.-Y., and Park, H.B., Science, 2013, vol. 342, p. 91.

    Article  ADS  Google Scholar 

  10. Galashev, A.E. and Polukhin, V.A., Phys. Met. Metallogr., 2014, vol. 115, no. 7, p. 697.

    Article  ADS  Google Scholar 

  11. Galashev, A.E. and Rakhmanova, O.R., High Temp., 2014, vol. 52, no. 3, p. 374.

    Article  Google Scholar 

  12. Galashev, A.E., High Temp., 2014, vol. 52, no. 5, p. 633.

    Article  Google Scholar 

  13. Orekhov, N.D. and Stegailov, V.V., High Temp., 2014, vol. 52, no. 2, p. 198.

    Article  Google Scholar 

  14. Zakharchenko, K.V. and Fasolino, A., Los, J.H., and Katsnelson, M.I., J. Phys.: Condens. Matter, 2011, vol. 23, p. 202202.

    ADS  Google Scholar 

  15. Tersoff, J., Phys. Rev. Lett., 1988, vol. 61, p. 2879.

    Article  ADS  Google Scholar 

  16. Burgos, E., Halac, E., and Bonadeo, H., Chem. Phys. Lett., 1998, vol. 298, nos. 4–6, p. 273.

    Article  ADS  Google Scholar 

  17. Stuart, S.J., Tutein, A.V., and Harrison, J.A., J. Chem. Phys., 2000, vol. 112, p. 6472.

    Article  ADS  Google Scholar 

  18. Galashev, A.E. and Polukhin, V.A., Phys. Solid State, 2013, vol. 55, no. 8, p. 1733.

    Article  ADS  Google Scholar 

  19. Schwerdtfeger, P., Wesendrup, R., Moyano, G.E., Sadlej, A.J., Greif, J., and Hensel, F., J. Chem. Phys., 2001, vol. 115, p. 7401.

    Article  ADS  Google Scholar 

  20. Kutana, A. and Giapis, K.P., Nano Lett., 2006, vol. 6, p. 656.

    Article  ADS  Google Scholar 

  21. Silvera, I.F. and Goldman, V.V., J. Chem. Phys., 1978, vol. 69, p. 4209.

    Article  ADS  Google Scholar 

  22. Lamari, F.D. and Levesque, D., Carbone, 2011, vol. 49, p. 5196.

    Article  Google Scholar 

  23. Verlet, L., Phys. Rev., 1967, vol. 159, p. 98.

    Article  ADS  Google Scholar 

  24. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, p. 3684.

    Article  ADS  Google Scholar 

  25. Hafskjold, B. and Ikeshoji, T., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2002, vol. 66, no. 1, p. 011203.

    Article  ADS  Google Scholar 

  26. Davydov, S.Yu., Phys. Solid State, 2012, vol. 54, no. 4, p. 875.

    Article  ADS  Google Scholar 

  27. Rao, R.V.G. and Murthy, A.K.K., Phys. Status Solidi B, 1974, vol. 66, p. 703.

    Article  ADS  Google Scholar 

  28. Eberhart, J.G. and Pinks, V., J. Colloid Interface Sci., 1985, vol. 7, p. 574.

    Article  Google Scholar 

  29. Salla, J.M., Demichela, M., and Casal, J., J. Loss Prev. Process Ind., 2006, vol. 19, p. 690700.

    Article  Google Scholar 

  30. Monde, M. and Hasan, M.N., in Proc. Int. Conf. on Mechanical Engineering 2011 (ICME2011), Dhaka: BUET, 2011, p. KEY-004.

    Google Scholar 

  31. Ward, C.A. and Stanga, D., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2001, vol. 64, p. 051509.

    Article  ADS  Google Scholar 

  32. McGaugheya, A.J.H. and Ward, C.A., J. Appl. Phys., 2002, vol. 91, p. 6406.

    Article  ADS  Google Scholar 

  33. Lotfi, A., Vrabec, J., and Fischer, J., Int. J. Heat Mass Transfer, 2014, vol. 73, p. 303.

    Article  Google Scholar 

  34. Galashev, A.E., Colloid J., 2015, vol. 77, no. 5, p. 582.

    Article  Google Scholar 

  35. Orlikowski, D., Nardelli, M.B., Bernholc, J., and Roland, C., Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, p. 14194.

    Article  ADS  Google Scholar 

  36. Ma, J., Alfe, D., Michaelides, A., and Wang, E., Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, p. 033407.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, 2016, published in Teplofizika Vysokikh Temperatur, 2016, Vol. 54, No. 5, pp. 733–741.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E. Molecular-dynamic analysis of fast heating of a mercury film on graphene. High Temp 54, 690–697 (2016). https://doi.org/10.1134/S0018151X16050102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X16050102

Navigation