Skip to main content
Log in

Studying equilibrium thermophysical properties of simple liquids based on a four-parameter oscillating interaction potentia

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The equilibrium thermodynamic properties of a system with a four-parameter oscillating interaction potential which can be reduced to an oscillating potential with a single varying parameter is studied in the context of the statistical approach. The appearance of a phase transition of the first kind in the system is established. The relations between the geometric characteristics of potential with coordinates of critical points are obtained. The temperature dependences of some thermophysical properties on the phase equilibrium line and in the supercritical region are found. Thermodynamic parameters that depend on temperature and density are represented as functions of a constituting parameter connected with the interaction potential. The results of calculations are compared with the measurement data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zubarev, D.N., Dokl. Akad. Nauk SSSR, 1954, vol. 35, no. 4, p. 757.

    MathSciNet  Google Scholar 

  2. Zakharov, A.Yu., Phys. Lett. A, 1990, vol. 147, nos. 8–9, p. 442.

    Article  ADS  MathSciNet  Google Scholar 

  3. Yukhnovskii, I.R. and Golovko, M.F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem (The Statistical Theory of Classical Equilibrium Systems), Kiev: Naukova Dumka, 1980.

    Google Scholar 

  4. Yukhnovskii, I.R., Teoriya fazovykh perekhodov vtorogo roda. Metod kollektivnykh peremennykh (Theory of Second-Order Phase Transitions: The Method of Collective Variables), Kiev: Naukova Dumka, 1985.

    Google Scholar 

  5. Zakharov, A.Yu. and Loktionov, I.K., Theor. Math. Phys., 1999, vol. 119, no. 1, p. 532.

    Article  MATH  MathSciNet  Google Scholar 

  6. Loktionov, I.K., High Temp., 2011, vol. 49, no. 4, p. 512.

    Article  Google Scholar 

  7. Zakharov, A.Yu., Russ. J. Phys. Chem. A, 2000, vol. 74, no. 1, p. 40.

    Google Scholar 

  8. Zakharov, A.Yu., Izv. Akad. Nauk, Ser. Fiz., 2004, vol. 68, no. 7, p. 938.

    Google Scholar 

  9. Zakharov, A.Yu., Int. J. Quantum Chem., 2004, vol. 96, p. 234.

    Article  Google Scholar 

  10. Zakharov, A.Yu., Int. J. Quantum Chem., 2004, vol. 100, p. 442.

    Article  Google Scholar 

  11. Baus, M. and Tejero, C.F., Equilibrium Statistical Physics: Phases of Matter and Phase Transitions, Brussels, Belgium: Springer, 2008.

    Book  Google Scholar 

  12. Ruelle, D., Statistical Mechanics: Rigourous Results, New York: Benjamin, 1969.

    Google Scholar 

  13. Heyes, D.M. and Rickayzen, G., J. Phys.: Condens. Matter, 2007, no. 19, p. 1.

    Google Scholar 

  14. Loktionov, I.K., High Temp., 2012, vol. 50, no. 6, p. 708.

    Article  Google Scholar 

  15. Loktionov, I.K., High Temp., 2012, vol. 50, no. 3, p. 359.

    Article  Google Scholar 

  16. Kitaigorodskii, A.I., Usp. Fiz. Nauk, 1979, vol. 127, no. 3, p. 391.

    Article  Google Scholar 

  17. Altunin, V.V. and Gadetskii, O.G., Teplofiz. Vys. Temp., 1971, vol. 9, no. 3, p. 527.

    Google Scholar 

  18. Kaplan, I.G., Vvedenie v teoriyu mezhmolekulyarnykh vzaimodeistvii (Introduction to the Theory of Intermolecular Interactions), Moscow: Nauka, 1982.

    Google Scholar 

  19. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.A., Integrals and Series, New York: Gordon and Breach, 1986.

    Google Scholar 

  20. Ulenbek, G., Usp. Fiz. Nauk, 1971, vol. 103, no. 2, p. 275.

    Article  Google Scholar 

  21. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., The Molecular Theory of Gases and Liquids New York: Wiley, 1954.

    MATH  Google Scholar 

  22. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (A Reference Book on Thermal and Physical Properties of Gases and Liquids), Moscow: Fizmatgiz, 1972.

    Google Scholar 

  23. Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities: A Reference Book), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

  24. Stewart, R.B. and Jacobsen, R.T., J. Phys. Chem. Ref. Data, 1989, vol. 18, no. 2, p. 639.

    Article  ADS  Google Scholar 

  25. Kaganer, M.G., Zh. Fiz. Khim., 1958, vol. 32, no. 2, p. 332.

    Google Scholar 

  26. Shpil’rain, E.E. and Kessel’man, P.M., Osnovy teorii teplofizicheskikh svoistv veshchestv (Fundamentals of the Theory of Thermal and Physical Properties of Substances), Moscow: Energiya, 1977.

    Google Scholar 

  27. Novikov, I.I., in Uravneniya sostoyaniya gazov i zhidkostei. K stoletiyu uravneniya Van-der-Vaal’sa (The Equations of State of Gases and Liquids. On the Centenary of the Van der Waals Equation), Moscow: Nauka, 1975, p. 264.

    Google Scholar 

  28. Nozdrev, V.F. and Fedorishchenko, N.V., Molekulyarnaya akustika (Molecular Acoustics), Moscow: Vysshaya Shkola, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Loktionov.

Additional information

Original Russian Text © I.K. Loktionov, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 3, pp. 402–414.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loktionov, I.K. Studying equilibrium thermophysical properties of simple liquids based on a four-parameter oscillating interaction potentia. High Temp 52, 390–402 (2014). https://doi.org/10.1134/S0018151X14020151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14020151

Keywords

Navigation