Skip to main content
Log in

Calculation of the Surface Tension of Droplets of Binary Solutions of Simple Fluids and the Determination of Their Minimum Size

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

To describe the surface tension of vapor–liquid interfaces of one- and two-component simple fluids, a molecular theory based on the lattice gas model is applied. The surface tension of mixtures of simple fluids are calculated in a quasi-chemical approximation of an accounting of the intermolecular interactions of the nearest neighbors. The model parameters previously found from experimental data on bulk surface tensions enable calculation of the surface tension of vapor–liquid interfaces of one- and two-component droplets with different sizes as the function of their radius. The minimum size of thermodynamically stable small droplets with the properties of a homogeneous phase inside is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamson, A., The Physical Chemistry of Surfaces, New York: Wiley, 1976.

    Google Scholar 

  2. Khokonov, Kh.B., Poverkhnostnye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh (Surface Phenomena in Melts and Solid Phases Arising from Them), Kishinev: Shtiintsa, 1974.

    Google Scholar 

  3. Nizhenko, N.I. and Floka, L.I., Poverkhnostnoe natyazhenie zhidkikh metallov i splavov (Surface Tension of Liquid Metals and Alloys), Moscow: Metallurgiya, 1981.

    Google Scholar 

  4. Jaycock, M.J. and Parfitt, G.D., Chemistry of Interfaces, New York: Wiley, 1981.

    Google Scholar 

  5. Reist, P., Introduction to Aerosol Science, New York: Macmillan, 1984.

    Google Scholar 

  6. Volmer, M., Kinetik der Phasenbildung (Kinetics of Phase Formation), Dresden: Steinkopff, 1939.

    Google Scholar 

  7. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Moscow: Akad. Nauk SSSR, 1945.

    Google Scholar 

  8. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.

    Google Scholar 

  9. Buff, F.P. and Kirkwood, J.G., J. Chem. Phys., 1950, vol. 18, no. 7, p. 991.

    Article  ADS  Google Scholar 

  10. Abraham, F.F., Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation, New York: Academic, 1974.

    Google Scholar 

  11. Lushnikov, A.A. and Sutugin, A.G., Russ. Chem. Rev., 1976, vol. 45, no. 3, p. 197.

    Article  ADS  Google Scholar 

  12. Lushnikov, A.A., Dokl. Akad. Nauk SSSR, 1977, vol. 234, p. 97.

    Google Scholar 

  13. Kuchma, A.E., Shchekin, A.K., and Kuni, F.M., Colloid J., 2011, vol. 73, no. 2, p. 224.

    Article  Google Scholar 

  14. Avdeev, A.A., High Temp., 2015, vol. 53, no. 4, p. 538.

    Article  Google Scholar 

  15. Alekseev, V.B., Zalkind, V.I., Zeigarnik, Yu.A., Marinichev, D.V., Nizovskii, V.L., and Nizovskii, L.V., High Temp., 2015, vol. 53, no. 2, p. 214.

    Article  Google Scholar 

  16. Bagrov, V.V. and Cherkasov, S.G., High Temp., 2014, vol. 52, no. 1, p. 93.

    Article  Google Scholar 

  17. Volkov, R.S., Kuznetsov, G.V., Kuibin, P.A., and Strizhak, P.A., High Temp., 2016, vol. 54, no. 5, p. 722.

    Article  Google Scholar 

  18. Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, vol. 10 of Handbuch der Physik (Encyclopedia of Physics), Berlin: Springer, 1960.

    Google Scholar 

  19. Rowlinson, J.C. and Widom, B., Molecular Theory of Capillarity, Oxford: Clarendon, 1982.

    Google Scholar 

  20. Croxton, C.A., Liquid State Physics: A Statistical Mechanical Introduction, Cambridge: Cambridge Univ. Press, 1974.

    Book  Google Scholar 

  21. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 2, p. 180.

    Article  Google Scholar 

  22. Tovbin, Yu.K., Teoriya fiziko-khimicheskikh protsessov na granitse gaz–tverdoe telo (Theory of Physicochemical Processes at the Gas–Solid Interface), Moscow: Nauka, 1990.

    Google Scholar 

  23. Tovbin, Yu.K., Molekulyarnaya teoriya adsorbtsii v poristykh telakh (Molecular Theory of Adsorption in Porous Bodies), Moscow: Fizmatlit, 2012.

    Google Scholar 

  24. Tovbin, Yu.K., Kolloid. Zh., 1983, vol. 45, no. 4, p. 707.

    Google Scholar 

  25. Iwamatsu, M., J. Phys.: Condens. Matter, 1994, vol. 6, p. 173.

    ADS  Google Scholar 

  26. Baidakov, V.G. and Boltachev, G.Sh., Zh. Fiz. Khim., 1995, vol. 69, p. 515.

    Google Scholar 

  27. Oxtoby, D.W. and Evans, R., J. Chem. Phys., 1988, vol. 89, p. 7521.

    Article  ADS  Google Scholar 

  28. Bykov, T.V. and Shchekin, A.K., Inorg. Mater., 1999, vol. 35, no. 6, p. 641.

    Google Scholar 

  29. Bykov, T.V. and Shchekin, A.K., Colloid J., 1999, vol. 61, no. 2, p. 144.

    Google Scholar 

  30. Moody, M.P. and Attard, P., J. Chem. Phys., 2002, vol. 117, p. 6705.

    Article  ADS  Google Scholar 

  31. He, S. and Attard, P., Chem. Phys., 2005, vol. 7, p. 2928.

    Google Scholar 

  32. Thompson, S.M., Gubbins, K.E., Walton, J.P.R., et al., J. Chem. Phys., 1984, vol. 81, p. 530.

    Article  ADS  Google Scholar 

  33. Zhukhovitskii, D.I., Colloid J., 2003, vol. 65, no. 4, p. 440.

    Article  Google Scholar 

  34. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., The Molecular Theory of Gases and Liquids, New York: Wiley, 1954.

    MATH  Google Scholar 

  35. Prigogine, I., The Molecular Theory of Solutions, New York: North-Holland, 1957.

    MATH  Google Scholar 

  36. Bird, R.B., Stewart, W.E., and Lightoot, E.N., Transport Phenomena, New York: Wiley, 1960.

    Google Scholar 

  37. Read, R., Prausnitz, J., and Sherwood, T., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

  38. Crain, E.W. and Santag, R.E., Adv. Cryog. Eng., 1966, vol. 11, p. 379.

    Google Scholar 

  39. Zykov, N.A., Koeffitsienty vyazkosti i diffuzii binarnykh smesei azota s odnoatomnymi gazami (Coefficients of Viscosity and Diffusion of Binary Mixtures of Nitrogen with Monatomic Gases), Moscow: Tsentr. Aerogidrodin. Inst., 1979.

    Google Scholar 

  40. Tovbin, Yu.K. and Komarov, V.N., Russ. J. Phys. Chem. A, 2001, vol. 75, no. 3, p. 490.

    Google Scholar 

  41. Komarov, V.N. and Tovbin, Yu.K., High Temp., 2003, vol. 41, no. 2, p. 181.

    Article  Google Scholar 

  42. Tovbin, Yu.K. and Komarov, V.N., Russ. J. Phys. Chem. A, 2005, vol. 79, no. 11, p. 1807.

    Google Scholar 

  43. Komarov, V.N., Rabinovich, A.B., and Tovbin, Yu.K., High Temp., 2007, vol. 45, no. 4, p. 463.

    Article  Google Scholar 

  44. Zaitseva, E.S. and Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 11, p. 2208.

    Article  Google Scholar 

  45. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 10, p. 1717.

    Article  Google Scholar 

  46. Tovbin, Yu.K. and Rabinovich, A.B., Russ. Chem. Bull., 2009, vol. 58, no. 11, p. 2193.

    Article  Google Scholar 

  47. Tovbin, Yu.K. and Rabinovich, A.B., Russ. Chem. Bull., 2010, vol. 59, no. 4, p. 667.

    Google Scholar 

  48. Tovbin, Yu.K. and Rabinovich, A.B., Russ. Chem. Bull., 2010, vol. 59, no. 4, p. 857.

    Article  Google Scholar 

  49. Tovbin, Yu.K., Zaitseva, E.S., and Rabinovich, A.B., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 1, p. 150.

    Article  Google Scholar 

  50. Tovbin, Yu.K., Komarov, V.N., and Zaitseva, E.S., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 10, p. 2096.

    Article  Google Scholar 

  51. Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities: A Reference Book), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

  52. Abramzon, A.A., Poverhnostno-aktivnye veshchestva: svoistva i primenenie (Surfactants: Properties and Applications), Leningrad: Khimiya, 1981.

    Google Scholar 

  53. Tovbin, Yu.K., Zaitseva, E.S., and Rabinovich, A.B., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 10, p. 1957.

    Article  Google Scholar 

  54. Gibbs, Dzh.V., Termodinamika. Statisticheskaja mehanika (Thermodynamics. Statistical Mechanics), Moscow: Nauka, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Original Russian Text © Yu.K. Tovbin, E.S. Zaitseva, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 3, pp. 381–389.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K., Zaitseva, E.S. Calculation of the Surface Tension of Droplets of Binary Solutions of Simple Fluids and the Determination of Their Minimum Size. High Temp 56, 366–373 (2018). https://doi.org/10.1134/S0018151X18020219

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18020219

Navigation