Skip to main content
Log in

Evaluation of the nitrogen oxide emission level for a steam supply with natural gas into the combustion chamber of a gas turbine unit

  • High Temperature Apparatuses and Structures
  • Published:
High Temperature Aims and scope

Abstract

Numerical simulation results on the effect of the operation parameters for a combustion chamber of a combined-cycle plant (CCP) with steam injection [1] for the combined production of heat and electric energy upon a reduction in nitrogen oxide emission are represented. Calculations are carried out for lean mixtures with α = 1.2–1.4 and great steam consumptions of 30–42%. The reaction analysis has shown that the main contribution in NO x formation was given by reactions with the advanced Zel’dovich thermal mechanism, and the reaction contribution with the participation of N2O into the NO formation was an order of magnitude higher than that by the mechanism of the prompt NO formation. NO2 does not form at high temperatures and only takes part in the conversion into NO in reactions with the participation of nitric acid. It is shown that the optimum choice of operation conditions for the combustion chamber of the CCP makes it possible to obtain the NO x content in the combustion products in some mill−1 (ppm). According to calculations, steam injection does not increase CO emission. A comparison with the experiment is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maslennikov, V.M. and Shterenberg, V.Ya., High Temp., 2011, vol. 49, no. 5, p. 750.

    Article  Google Scholar 

  2. Sigal, I.Ya., Zashchita vozdushnogo basseina pri szhiganii topliva (Protection of the Air Basin during the Combustion of Fuel), Moscow: Nedra, 1988.

    Google Scholar 

  3. Correa, S.M., Combust. Sci. Technol., 1992, vol. 87, p. 329.

    Article  Google Scholar 

  4. Landman, M.J., Derksen, M.A.F., and Kok, J.B.W., Combust. Sci. Technol., 2006, vol. 178, p. 623.

    Article  Google Scholar 

  5. Matynia, A., Delfau, J.-L., Pillier, V., and Vovelle, C., Combust., Explos. Shock Waves, 2009, vol. 45, no. 6, p. 635.

    Article  Google Scholar 

  6. Zhao, D., Yamashita, H., Kitagawa, K., Arai, N., and Furuhata, T., Combust. Flame, 2002, vol. 130, p. 352.

    Article  Google Scholar 

  7. Fuller, C.C., Gokulakrishnan, P., Klassen, M.S., Adusumilli, S., Kochar, Y., Bloomer, D., Seitzman, J., Kim, H.H., Won, V., Dryer, F.L., Ju, Y., and Kiel, B.V., AIAA Pap., 2012, vol. PC1.

  8. Dibelius, N.R., Hilt, M.B., and Johnson, R.H., Am. Soc. Mech. Eng. [Pap.], 1971, no. 58, p. 76.

    Google Scholar 

  9. Davis, L.B., GE Power Systems, 1992, vol. GER-3568C.

  10. Gordin, K.A. and Maslennikov, V.M., Combust. Explos. Shock Waves, 1986, vol. 22, no. 1, p. 54.

    Article  Google Scholar 

  11. Bityurin, V.A., Bocharov, A.N., and Filimonova, E.A., in Combustion and Atmospheric Pollution, Roy, G.D., Frolov, S.M., and Starik, A.M, Eds., Moscow: Torus, 2003, p. 188.

  12. Zheleznyak, M.B. and Filimonova, E.A., High Temp., 1998, vol. 36, no. 3, p. 352.

    Google Scholar 

  13. Zheleznyak, M.B. and Filimonova, E.A., High Temp., 1998, vol. 36, no. 4, p. 533.

    Google Scholar 

  14. Baulch, D.L., Bowman, C.T., Cobos, D.J., Cox, R.A., Just, Th., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., and Warnatz, J., J. Phys. Chem. Ref. Data, 2005, vol. 35, p. 757

    Article  Google Scholar 

  15. NIST Chemical Kinetics Database on the Web. http://kinetics.nist.gov.

  16. Filimonova, E.A., Kim, Y., Hong, S.H., and Song, Y.H., J. Phys. D: Appl. Phys, 2002, vol. 35, p. 2795.

    Article  ADS  Google Scholar 

  17. Maslennikov, V.M., Alekseev, V.B., Vyskubenko, Yu.A., Tsalko, E.A., and Antoshin, A.I., Provedenie problemno-orientirovannykh issledovanii i razrabotka nauchnotekhnicheskikh reshenii sozdaniya ekologicheski chistoi parogazovoi ustanovki novogo pokoleniya dlya kombinirovannoi vyrabotki teplovoi i elektricheskoi energii obrazovaniya NO x v kamere sgoraniya teplofikatsionnoi parogazovoi ustanovki. Otchet po Goskontraktu 16.516.11.6144 (Implementation of Problem-Oriented Research and Development of Scientific and Technical Solutions for the Design and Fabrication of the Next-Generation Environmentally Friendly Combined Cycle Gas Turbine for Combined Heat and Power Production during the Formation of NOx in the Combustion Chamber of the Thermal Clamping Turbines for Combined Gas Cycle Plant: Report on the State Contract no. 16.516.11.6144), Moscow, 2012.

    Google Scholar 

  18. Eckert, E.-R. and Drake, R.-M., Heat Mass Transfer, New York: McGraw, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Gordin.

Additional information

Original Russian Text © K.A. Gordin, V.M. Maslennikov, E.A. Filimonova, 2013, published in Teplofizika Vysokikh Temperatur, 2013, Vol. 51, No. 6, pp. 937–944.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordin, K.A., Maslennikov, V.M. & Filimonova, E.A. Evaluation of the nitrogen oxide emission level for a steam supply with natural gas into the combustion chamber of a gas turbine unit. High Temp 51, 855–862 (2013). https://doi.org/10.1134/S0018151X13060126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X13060126

Keywords

Navigation