Skip to main content
Log in

Comparative study of the influence of CO2 and H2O on the chemical structure of lean and rich methane-air flames at atmospheric pressure

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A comparative study of the influence of CO2 and H2O on both lean and rich CH4-air laminar flames is performed. Six premixed flames are stabilized on a flat flame burner at atmospheric pressure: lean (with the equivalence ratio maintained constant at ϕ = 0.7) and rich (with the equivalence ratio maintained constant at ϕ = 1.4) CH4-air, CH4-CO2-air, and CH4-H2O-air flames. These flames are studied experimentally and numerically. The [CO2]/[CH4] and [H2O]/[CH4] ratios are kept equal to 0.4 for both flames series. Species mole fraction profiles are measured by gas chromatography and Fourier transform infrared spectroscopy analyses of gas samples withdrawn along the vertical axis by a quartz microprobe. Flames structures are computed by using the ChemkinII/Premix code. Four detailed combustion mechanisms are used to calculate the laminar flame velocities and species mole fraction profiles: GRI-Mech 3.0, Dagaut, UCSD, and GDFkin®3.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ponnusamy, M. D. Checkel, and B. A. Fleck, “Maintaining burning velocity of exhaust-diluted methane-air flames by partial fuel reformation,” IFRF Combust. J., No. 200506 (2005).

  2. P. Han, M. D. Checkel, B. A. Fleck, and N. L. Nowicki “Burning velocity of methane/diluent mixture with reformer gas addition,” Fuel, 86, 585–596 (2007).

    Article  Google Scholar 

  3. A. Dubreuil, F. Foucher, C. Mounaïm-Rousselle, G. Dayma, and P. Dagaut, “HCCI combustion: Effect of NO in EGR,” Proc. Combust. Inst., 31, 2879–2886 (2007).

    Article  Google Scholar 

  4. J. Y. Ren, W. Qin, F. N. Egolfopoulos, H. Mak, and T. T. Tsotsis “Methane reforming and its potential effect on the efficiency and pollutant emissions of lean methane-air combustion,” Chem. Eng. Sci, 56, 1541–1549 (2001).

    Article  Google Scholar 

  5. J. Y. Ren, F. N. Egolfopoulos, and T. T. Tsotsis, “NOx emission control of lean methane-air combustion with addition of methane reforming products,” Combust. Sci. Technol., 174, 181–205 (2002).

    Article  Google Scholar 

  6. C. Renard, M. Musik, P. J. Van Tiggelen, and J. Vandooren, “Effect of CO2 or H2O addition on hydrocarbon intermediates in rich C2H4/O2/Ar flames,” in: Proc. European Combustion Meeting (2003).

  7. D. Zhao, H. Yamashita, K. Kitagawa, N. Arai, and T. Furuhata, “Behavior and effect on NOx formation of OH radical in methane-air diffusion flame with steam addition,” Combust. Flame, 130, 352–360 (2002).

    Article  Google Scholar 

  8. D.-J. Hwang, J.-W. Choi, J. Park, S.-I. Keel, C.-B. Ch, and D.-S. Noh, “Numerical study on flame structure and NO formation in CH4-O2-N2 counterflow diffusion flame diluted with H2O,” Int. J. Energ. Res., 28, 1255–1267 (2004).

    Article  Google Scholar 

  9. J. Biet, J. L. Delfau, L. Pillier, and C. Vovelle, “Influence of CO2 and H2 on the chemical structure of a premixed, lean methane-air flame,” in: Proc. European Combustion Meeting (2007).

  10. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0 (1999). http://www.me.berkeley.edu/grimech/version30/text30.html.

  11. P. Dagaut and A. Nicolle, “Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges,” Proc. Combust. Inst., 30, 2631–2638 (2005).

    Article  Google Scholar 

  12. University of California, San Diego, Center for Energy Research Combustion Division; http://maemail.ucsd.edu/combustion/cermech/.

  13. A. El Bakali, L. Pillier, P. Desgroux, B. Lefort, L. Gasnot, J. F. Pauwels, and I. da Costa, “NO prediction in natural gas flames using GDF-Kin_3.0 mechanism: NCN and HCN contribution to prompt-NO formation,” Fuel, 85, 896–909 (2006).

    Article  Google Scholar 

  14. J. H. Kent, “A noncatalytic coating for platinumrhodium thermocouples,” Combust. Flame., 14, 279–282 (1970).

    Article  Google Scholar 

  15. J. Biet, J. L. Delfau, A. Seydi, and C. Vovelle, “Experimental and modeling study of lean premixed atmospheric-pressure propane/O2/N2 flames,” Combust. Flame, 142, 197–209 (2005).

    Article  Google Scholar 

  16. U. Bonne, Th. Grewer, and H. Gg. Wagner, “Messungen in der Reaktionzone von wasserstoff-sauerstoff und methane-sauerstoff Flammen,” Z. Phys. Chem., 26, 93–110 (1960).

    Google Scholar 

  17. E. W. Kaiser, T. J. Wallington, M. D. Hurley, J. Platz, H. J. Curran, W. J. Pitz, and C. K. Westbrook, “Experimental and modelling study of premixed atmospheric-pressure dimethyl ether-air flames,” J. Phys. Chem., 104, 8194–8206 (2000).

    Google Scholar 

  18. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Sandia National Laboratories Report No. SAND 89-8009B (1989).

  19. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, “PREMIX: A Fortran program for modeling laminar one-dimensional premixed flames,” Sandia National Laboratories Report No. SAND85-8240 (1985). http://www.ca.sandia.gov/chemkin/.

  20. F. Liu, H. Guo, G. J. Smallwood, and O. L. Gülder, “The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation,” Combust. Flame, 125,Nos. 1–2, 778–787 (2001).

    Article  Google Scholar 

  21. F. Liu, H. Guo, and G. J. Smallwood “The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames,” Combust. Flame, 133, No. 4, P. 495–497 (2003).

    Article  Google Scholar 

  22. C. Zhang, A. Atreya, and K. Lee, “Sooting structure of methane counterflow diffusion flames with preheated reactants and dilution by products of combustion,” Proc. Combust. Inst., 24, 1049–1057 (1992).

    Google Scholar 

  23. B. S. Babkin and A. V. V’yun, “Effect of water vapor on the normal burning velocity of a methane-air mixture at high pressures,” Combust., Expl., Shock Wave, 7, No. 3, 339–341 (1971).

    Article  Google Scholar 

  24. I. Fells and A. G. Rutherford, “Burning velocity of methane-air flames,” Combust. Flame, 13, 130–138 (1969).

    Article  Google Scholar 

  25. K. Müller-Dethlefs and A. F. Schlader, “The effect of steam on flame temperature, burning velocity and carbon formation in hydrocarbon flames,” Combust. Flame, 27, 205–215 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pillier.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 6, pp. 3–14, November–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matynia, A., Delfau, J.L., Pillier, L. et al. Comparative study of the influence of CO2 and H2O on the chemical structure of lean and rich methane-air flames at atmospheric pressure. Combust Explos Shock Waves 45, 635–645 (2009). https://doi.org/10.1007/s10573-009-0078-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0078-5

Key words

Navigation