Skip to main content
Log in

Interaction of a two-phase jet with a solid body with generation of a “Chaos” of particles

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A simple physicomathematical model of interaction of an axisymmetrical supersonic monodispersed jet with a solid body is proposed. The interaction leads to a rise of the fractions of reflected spinning particles and a “gas” of chaotized particles. This “gas” has its inherent pressure and diffusion coefficient. Numerical solutions of the corresponding system of equations are obtained in a wide range of the mass fractions of the particles in the mixing chamber. The model developed enables the shielding effect of reflected and chaotized particles to be estimated. In particular, their effect on heat transfer between the two-phase jet and the streamlined body can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkhimov, A.P., Klinkov, S.V., Kosarev, V.F., Mikhatulin, D.S., and Polezhaev, Yu.V., Teplofiz. Aeromekh., 2005, vol. 12, no. 3, p. 415.

    Google Scholar 

  2. Laderman, A.J., Lewis, C.H., and Byron, S.R., AIAA J., 1970, vol. 8, no. 10, p. 1831.

    Article  ADS  Google Scholar 

  3. Matveev, S.K. and Seyukova, L.P., in Techeniya vyazkogo i nevyazkogo gaza. Dvukhfaznye zhidkosti (Flows of Viscous and Non-Viscous Gases: Two-Phase Liquids), Leningrad: Leningrad State University, 1981, p. 3; Gazodin. Teploobmen., 1981, no. 6.

    Google Scholar 

  4. Golovachev, Yu.P. and Shmidt, A.A., Fluid Dyn., 1982, vol. 17, no. 3, p. 387.

    Article  ADS  Google Scholar 

  5. Vasilevskii, E.B., Osiptsov, A.N., Chirikhin, A.V., and Yakovleva, L.V., Inzh.-Fiz. Zh., 2001, vol. 74, no. 6, p. 25.

    Google Scholar 

  6. Kudin, O.K., Nesterov, Yu.N., Tokarev, O.D., Flaksman, Ya.Sh., and Yakovleva, L.V., in Tezisy dokladov XXII Yubileinyi seminar “Struinye, otryvnye i nestatsionarnye techeniya,” 2010 (Abstract of Papers of the XXII Anniversary International Seminar “Jet, Separated and Unsteady Flows,” St. Petersburg, Russia, June 22–25, 2010), St. Petersburg: St. Petersburg State University, 2010, p. 80.

    Google Scholar 

  7. Volkov, A.N., Tsirkunov, Yu.V., and Oesterlé, B., Int. J. Multiphase Flow, 2005, vol. 31, p. 1244.

    Article  MATH  Google Scholar 

  8. Lashkov, V.A., Inzh.-Fiz. Zh., 1991, vol. 60, no. 2, p. 197.

    Google Scholar 

  9. Molleson, G.V. and Stasenko, A.L., Uch. Zap. TsAGI, 1990, vol. 21, no. 5, p. 51.

    ADS  Google Scholar 

  10. Molleson, G.V. and Stasenko, A.L., High Temp., 2012, vol. 50, no. 6, p. 755.

    Article  Google Scholar 

  11. Molleson, G.V. and Stasenko, A.L., Mat. Model., 2011, vol. 23, no. 12, p. 49.

    MathSciNet  MATH  Google Scholar 

  12. Osiptsov, A.N., Fluid Dyn., 1984, vol. 19, no. 3, p. 378.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Gilinskii, M.M. and Stasenko, A.L., Sverkhzvukovye gazodispersnye strui (Supersonic Gas-Dispersion Jets), Moscow: Mashinostroenie, 1990.

    Google Scholar 

  14. Lukerchenko, N., in Materialy VIII Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh (NPNJ-2010) (Proceedings of the Eighth International Conference on Non-Equilibrium Processes in Nozzles and Jets (NPNJ-2010), Alushta, Ukraine, May 25–31, 2010), Moscow: MAI-PRINT (Moscow Aviation Institute), 2010, p. 82.

    Google Scholar 

  15. Millikan, R.A., Phys. Rev., 1923, vol. 22, p. 1.

    Article  ADS  Google Scholar 

  16. Kavanau, L.L., Trans. ASME, 1955, vol. 77, no. 5, p. 613.

    Google Scholar 

  17. Oesterlé, B. and Bui, Dinh, T., Exp. Fluids, 1998, vol. 25, p. 16.

    Article  Google Scholar 

  18. Rubinow, S.I. and Keller, J.B., J. Fluid Mech., 1961, vol. 11, p. 447.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Dennis, S.C.R., Singh, S.N., and Ingham, D.B., J. Fluid Mech., 1980, vol. 101, p. 257.

    Article  ADS  MATH  Google Scholar 

  20. Crowe, C.T., Int. J. Multiphase Flow, 2000, vol. 26, p. 719.

    Article  MATH  Google Scholar 

  21. Sarkar, S. and Balakrishnan, L., Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer, Hampton, Virginia, United States: National Aeronautics and Space Administration, Langley Research Center, 1990; ICASE report, no. 90-18, NASA CR-182002.

    Google Scholar 

  22. Simonin, O., in Proceedings of the Fifth Workshop on Two-Phase Flow Predictions, Erlangen, Germany, March 19-22, 1990, Erlangen, 1990, p. 156.

    Google Scholar 

  23. Mednikov, E.T., Turbulentnyi perenos i osazhdenie aerozolei (Turbulent Transfer and Deposition of Aerosols), Moscow: Nauka, 1981.

    Google Scholar 

  24. Longwell, J.P. and Weiss, M.A., Ind. Eng. Chem., 1953, vol. 45, no. 3, p. 667.

    Article  Google Scholar 

  25. Friedlander, S.K., AIChE J., 1957, vol. 3, no. 3, p. 381.

    Article  Google Scholar 

  26. Theofanous, T. and Sullivan, J., J. Fluid Mech., 1982, vol. 116, p. 343.

    Article  ADS  Google Scholar 

  27. Stasenko, A.L., in Nauchno-tekhnicheskii otchet FGUP TsAGI (Scientific and Technical Report FSUE TsAGI for 2006), Zhukovskii, Moscow region: Central Aerohydrodynamic Institute, 2007, p. 207.

    Google Scholar 

  28. Stasenko, A.L., Inzh.-Fiz. Zh., 2007, vol. 80, no. 5, p. 38.

    Google Scholar 

  29. Molleson, G.V. and Stasenko, A.L., High Temp., 2009, vol. 47, no. 5, p. 680.

    Article  Google Scholar 

  30. Derevich, I.V., J. Appl. Mech. Tech. Phys., 1999, vol. 40, no. 5, p. 989.

    Article  ADS  Google Scholar 

  31. Lashkov, V.A. and Matveev, S.K., Vestn. St. Peterb. Univ., Ser. 1: Mat., Mekh., Astron., 2009, no.1, p. 76.

    Google Scholar 

  32. Varaksin, A.L., Stolknoveniya v potokakh gaza s tverdymi chastitsami (Collisions in Flows of the Gas with Solid Particles), Moscow: Fizmatlit, 2008.

    Google Scholar 

  33. Stasenko, A.L., Kvant, 2009, no. 3, p. 48.

    Google Scholar 

  34. Handbook of Physical Quantities, Grigoriev, I.S. and Meilikhov, E.Z., Eds., Boca Raton, Florida, United States: CRC Press, 1996.

    Google Scholar 

  35. Kim, O.V. and Dunn, P.F., J. Aerosol Sci., 2007, vol. 38, p. 532.

    Article  Google Scholar 

  36. Belotserkovskii, O.M. and Davydov, Yu.M., Metod krupnykh chastits v gazovoi dinamike (Method of Large Particles in Gas Dynamics), Moscow: Nauka, 1982.

    Google Scholar 

  37. Shebeko, V.N., Inzh.-Fiz. Zh., 1986, vol. 51, no. 3, p. 428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Stasenko.

Additional information

Original Russian Text © G.V. Molleson, A.L. Stasenko, 2013, published in Teplofizika Vysokikh Temperatur, 2013, Vol. 51, No. 4, pp. 598–611.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molleson, G.V., Stasenko, A.L. Interaction of a two-phase jet with a solid body with generation of a “Chaos” of particles. High Temp 51, 537–550 (2013). https://doi.org/10.1134/S0018151X13040147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X13040147

Keywords

Navigation