Skip to main content
Log in

Kinetic-thermal effect of a gas-dispersed supersonic jet on an axisymmetric body

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The heat flux distribution over a spherical surface streamlined by a two-phase jet is investigated numerically based on a refined model of collisions of a particle with a streamlined body and on the physicomathematical model of interphase interaction in a gas-dispersed flow, which was developed previously in [1, 2]. Agreement between the numerical and experimental [3] results is demonstrated. The computations are performed in a wide range of initial mass fractions of particles and physicomechanical properties of their materials taking into account the shielding effect of the reflected and chaotized fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molleson, G.V. and Stasenko, A.L., High Temp., 2011, vol. 49, no. 1, p. 72.

    Article  Google Scholar 

  2. Molleson, G.V. and Stasenko, A.L., High Temp., 2013, vol. 51, no. 4, p. 537.

    Article  Google Scholar 

  3. Kudin, O.K., Nesterov, Yu.N., Tokarev, O.D., and Flaksman, Ya.Sh., Uch. Zap. TsAGI, 2013, vol. 44, no. 6, p. 102.

    Google Scholar 

  4. Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., Teploobmen i razrushenie tel v sverkhzvukovom geterogennom potoke (Heat Transfer and Destruction of Materials in ? Supersonic Heterogeneous Flow), Moscow: Yanus-K, 2007.

    Google Scholar 

  5. Vasilevskii, E.B., Dombrovskii, L.A., Mikhatulin, D.S., and Polezhaev, Yu.V., High Temp., 2001, vol. 39, no. 6, p. 860.

    Article  Google Scholar 

  6. Varaksin, A.Yu., Stolknoveniya v potokakh gaza s tverdymi chastitsami (Collisions in Flows of a Gas with Solid Particles), Moscow: Fizmatlit, 2008.

    Google Scholar 

  7. Millikan, R.A., Phys. Rev., 1923, vol. 22, p. 1.

    Article  ADS  Google Scholar 

  8. Crowe, C.T., J. Fluids Eng., 1982, vol. 104, p. 297.

    Article  Google Scholar 

  9. Kogan, M.N., Galkin, V.S., and Fridlender, O.G., Sov. Phys.—Usp., 1976, vol. 19, no. 5, p. 420.

    Article  ADS  Google Scholar 

  10. Kavanau, L.L., Trans. ASME, 1955, vol. 77, no. 5, p. 613.

    Google Scholar 

  11. Oesterle’, B. and Bui Dinh, T., Exp. Fluids, 1998, vol. 25, p. 16.

    Article  Google Scholar 

  12. Rubinow, S.I. and Keller, J.B., J. Fluid Mech., 1961, vol. 11, p. 447.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Dennis, S.C.R., Singh, S.N., and Ingham, D.B., J. Fluid Mech., 1980, vol. 101, p. 257.

    Article  ADS  MATH  Google Scholar 

  14. Lukerchenko, N.N., Kharlamov, A.A., and Kvurt, Yu.P., in Materialy VI Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh (NPNJ-2006), St. Petersburg, 2006 (Proceedings of the Sixth International Conference on Non-Equilibrium Processes in Nozzles and Jets (NPNJ-2006), St. Petersburg, Russia, June 26–July 1, 2006), Moscow: Vuzovskaya Kniga, 2006.

    Google Scholar 

  15. Stasenko, A.L., Tr. TsAGI, 1994, no. 2530, p. 3.

    Google Scholar 

  16. Stasenko, A.L., Inzh.-Fiz. Zh., 2007, vol. 80, no. 5, p. 38.

    Google Scholar 

  17. Tabakoff, W. and Hamed, A., Trans. Inst. Fluid-Flow Mech., 1976, vols. 70–72, p. 221.

    Google Scholar 

  18. Kangur, Kh.F. and Kleis, I.R., Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1988, no. 5, p. 182.

    Google Scholar 

  19. Lashkov, V.A., Inzh.-Fiz. Zh., 1991, vol. 60, no. 2, p. 197.

    Google Scholar 

  20. Kim, O.V. and Stasenko, A.L., in Trudy 51-i nauchnoi konferentsii MFTI “Sovremennye problemy fundamental’nykh i prikladnykh nauk”: Chast’ VI. Aeromekhanika i letatel’naya tekhnika, Zhukovskii, 2008 (Proceedings of the 51th Scientific Conference of Moscow Institute of Physics and Technology (MIPT) “Modern Problems of Fundamental and Applied Sciences”: Part 6. “Aeromechanics and Aircraft Equipment,” Zhukovskii, Moscow region, Russia, 2008), Zhukovskii: Moscow Institute of Physics and Technology, 2008, p. 175.

    Google Scholar 

  21. Crowe, C.T., Int. J. Multiphase Flow, 2000, vol. 26, p. 719.

    Article  MATH  Google Scholar 

  22. Sarkar, S. and Balakrishnan, L., ICASE Rep., 1990 no. 90-18, NASA Contract. Rep., 1990, no. 182002.

    Google Scholar 

  23. Mednikov, E.T., Turbulentnyi perenos i osazhdenie aerozolei (Turbulent Transport and Precipitation of Aerosols), Moscow: Nauka, 1981.

    Google Scholar 

  24. Longwell, J.P. and Weiss, M.A., Ind. Eng. Chem., 1953, vol. 45, no. 3, p. 667.

    Article  Google Scholar 

  25. Friedlander, S.K., AIChE J., 1957, vol. 3, no. 3, p. 381.

    Article  Google Scholar 

  26. Theofanous, T. and Sullivan, J., J. Fluid Mech., 1982, vol. 116, p. 343.

    Article  ADS  Google Scholar 

  27. Handbook of Physical Quantities, Grigoriev, I.S. and Meilikhov, E.Z., Eds., Boca Raton, Florida, United States: CRC Press, 1996.

    Google Scholar 

  28. Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities: A Reference Book), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

  29. Tables on the Thermophysical Properties of Liquids and Gases: In Normal and Dissociated States, Vargaftik, N.B., Ed., New York: Wiley, 1975.

    Google Scholar 

  30. Bashkin, V.A. and Egorov, I.V., Chislennoe modelirovanie dinamiki vyazkogo sovershennogo gaza (Numerical Simulation of the Dynamics of a Viscous Perfect Gas), Moscow: Fizmatlit, 2012.

    Google Scholar 

  31. Belotserkovskii, O.M. and Davydov, Yu.M., Metod krupnykh chastits v gazovoi dinamike (Method of Large Particles in Gas Dynamics), Moscow: Nauka, 1982.

    Google Scholar 

  32. Edvards, R.H. and Cheng, H.K., AIAA J., 1966, vol. 4, no. 3, p. 558.

    Article  Google Scholar 

  33. Stasenko, A.L., Inzh.-Fiz. Zh., 1970, vol. 18, no. 4, p. 671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Stasenko.

Additional information

Original Russian Text © G.V. Molleson, A.L. Stasenko, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 6, pp. 907–915.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molleson, G.V., Stasenko, A.L. Kinetic-thermal effect of a gas-dispersed supersonic jet on an axisymmetric body. High Temp 52, 881–889 (2014). https://doi.org/10.1134/S0018151X14050125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14050125

Keywords

Navigation