Skip to main content
Log in

Simulation of chemical transformation wave propagation through a flow reactor with a microbubble medium

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A numerical simulation is carried out of the exothermal heterogeneous reaction of cumene oxidation on the basis of a homogeneous model of bubble liquid. The thermal properties of the bubble medium are determined according to the proposed model. The influence of different factors is investigated on an oxidation level with a volume gas content value of more than 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedorov, A.Ya., Kholpanov, A.Ya., and Usacheva, L.G., A Two-Level Circulation Diffusion Model of Gas-Liquid Column-Type Reactors with Mechanical Mixing, Teor. Osn. Khim. Tekhnol., 1986, vol. 20, no. 2, p. 138.

    Google Scholar 

  2. Ul’yanov, B.A., Rodionov, A.I., and Yanchukovskaya, E.V., Structure of Two-Phase Layers and the Interfacial Surface Area on Contact Plates of Rectification and Absorption Columns, Teor. Osn. Khim. Tekhnol., 1986, vol. 20, no. 2, p. 162.

    Google Scholar 

  3. Barabash, V.M., Braginskii, L.N., and Gorbacheva, G.V., On the Calculation of the Gas Content in Apparatuses with a Stirrer, Teor. Osn. Khim. Tekhnol., 1982, vol. 16, no. 4, p. 442.

    Google Scholar 

  4. Rudobashta, L.Ya. and Planovskii, A.N., Investigation and Calculation of the Gas Content on Perforated Plates of the Extraction Column, Teor. Osn. Khim. Tekhnol., 1981, vol. 15, no. 6, p. 810.

    Google Scholar 

  5. Martsulevich, N.A., Protod’yakonov, I.O., and Romankov, P.G., Scaling-Up Effect in the Simulation of Mass-Exchange Processes in Apparatuses with an Ideal Mixing of the Dispersed Phase, Teor. Osn. Khim. Tekhnol., 1984, vol. 18, no. 1, p. 17.

    Google Scholar 

  6. Rozen, A.M. and Kostanyan, A.E., Scaling-Up Effect in Chemical Engineering, Teor. Osn. Khim. Tekhnol., 2002, vol. 36, no. 4, p. 509 [Theor. Found. Chem. Eng., (Engl. Transl.), 2002, vol. 36, no. 4, p. 307].

    Google Scholar 

  7. Nigmatulin, R.I., Methods of Mechanics of a Continuous Medium for the Description of Multiphase Mixtures, Prikl. Mat. Mekh., 1970, vol. 34, no. 5, p. 721.

    Google Scholar 

  8. Dorokhov, I.N., Kafarov, V.V., and Nigmatulin, R.I., General Equation of Multi-Phase and Multi-Component Monodisperse Systems with Chemical Reactions and Processes of Heat and Mass Transfer, Teor. Osn. Khim. Tekhnol., 1977, vol. 11, no. 2, p. 175.

    Google Scholar 

  9. Makhviladze, G.M. and Melikhov, O.I., Combustion of a Cloud of Air Suspensions over a Flat Horizontal Surface, Khim. Fiz., 1983, vol. 2, no. 7, p. 893.

    Google Scholar 

  10. Smirnov, N.N. and Zverev, N.I., Combustion of a Liquid Fuel Surface in a Gaseous Oxidizer Flow, Fiz. Goreniya Vzryva, 1983, vol. 14, no. 6, p. 59 [Combust., Explos. Shock Waves (Engl. Transl.), 1984, vol. 20, no. 6, p. 621].

    Google Scholar 

  11. Lesnyak, S.A. and Slutskii, V.G., Hugoniot Adiabat for Heterogeneous (Gas-Film) Detonation, Fiz. Goreniya Vzryva, 1980, vol. 16, no. 3, p. 120 [Combust., Explos. Shock Waves (Engl. Transl.), 1980, vol. 16, no. 3, p. 348].

    Google Scholar 

  12. Nigmatulin, R.I., Dinamika mnogofaznykh sred, Moscow: Nauka, 1987, parts 1–2. Translated under the title Dynamics of Multiphase Media, New York: Hemisphere, 1991.

    Google Scholar 

  13. Shmelev, A.S., Voronov, V.G., and Rasskazov, V.M., Specific Features of the Simulation of Gas-Liquid Reactors, Teor. Osn. Khim. Tekhnol., 1984, vol. 18, no. 3, p. 319.

    Google Scholar 

  14. Nigmatulin, R.I., Dynamics of Heterogeneous Media, Preprint of the Institute of Thermophysics of the Siberian Branch of the Academy of Science of the Soviet Union, Novosibirsk, 1984, no. 122-85.

  15. Smirnov, N.N. and Zverev, N.I., Geterogennoe gorenie (Heterogeneous Combustion), Moscow: Moscow State University, 1992.

    Google Scholar 

  16. Basevich, V.Ya., Frolov, S.M., Posvyanskii, V.S, Vedeneev, V.I., and Romanovich, L.B., Low-Temperature Spontaneous Ignition of a Droplet, Khim. Fiz., 2005, vol. 24, no. 5, p. 89.

    Google Scholar 

  17. Enikeev, I.Kh., Calculation of Subsonic Gas-Dispersion Flows in Curved Channels by the Particle-in-Cell Method, Teor. Osn. Khim. Tekhnol., 2006, vol. 40, no. 1, p. 85 [Theor. Found. Chem. Eng., (Engl. Transl.), 2006, vol. 40, no. 1, p. 80].

    Google Scholar 

  18. Karichev, Z.R. and Muler, A.L., Dissolution of Gas Bubbles Moving in a Liquid, Teor. Osn. Khim. Tekhnol., 2006, vol. 40, no. 1, p. 102 [Theor. Found. Chem. Eng., (Engl. Transl.), 2006, vol. 40, no. 1, p. 96].

    Google Scholar 

  19. Pokusaev, B.G., Transfer Processes in a Multiphase Medium, Teor. Osn. Khim. Tekhnol., 2007, vol. 41, no. 1, p. 35 [Theor. Found. Chem. Eng., (Engl. Transl.), 2007, vol. 41, no. 1, p. 30].

    Google Scholar 

  20. Nekrasov, A.K., Nekrasova, E.I., and Kholpanov, L.P., Mathematical Simulation of the Dynamics of the Dispersed Phase for the Nonisothermal Free Convection of a Heterogeneous Medium in a Vertical Cylindrical Reactor, Teor. Osn. Khim. Tekhnol., 2008, vol. 42, no. 2, p. 152 [Theor. Found. Chem. Eng., (Engl. Transl.), 2008, vol. 42, no. 2, p. 142].

    Google Scholar 

  21. Borisov, A.A., Frolov, S.M., Smetanyuk, V.A., Polikhov, S.A., and Segal, C., Interaction of a Fuel Droplet with a Gas Stream, Khim. Fiz., 2005, vol. 24, no. 7, p. 50.

    Google Scholar 

  22. Basevich, V.Ya., Frolov, S.M., and Posvyanskii, V.S., Condition for the Existence of Steady-State Heterogeneous Detonation, Khim. Fiz., 2005, vol. 24, no. 7, p. 58.

    Google Scholar 

  23. Basevich, V.Ya., Belyaev, A.A., Posvyanskii, V.S., Frolov, S.M., and Semenov, I.M., A Model of Laminar Flames in Gaseous Droplet Suspensions, Khim. Fiz., 2007, vol. 26, no. 8, p. 64 [Russ. J. Phys. Chem. B (Engl. Transl.), 2007, vol. 1, no. 5, p. 493].

    Google Scholar 

  24. Frolov, S.M. and Smetanyuk, V.A., Heat and Mass Exchange of a Droplet with a Gaseous Flow, Khim. Fiz., 2006, vol. 25, no. 4, p. 42.

    Google Scholar 

  25. Frolov, S.M. and Smetanyuk, V.A., Vaporization and Combustion of a Hydrocarbon Fuel Drop, Khim. Fiz., 2004, vol. 23, no. 7, p. 40.

    Google Scholar 

  26. Zakiev, S.E., A Novel Approach to the Simulation of Heterogeneous Combustion of Condensed Systems, Khim. Fiz., 2003, vol. 22, no. 4, p. 47.

    Google Scholar 

  27. Ibyatov, R.I., Kholpanov, L.P., Akhmadiev, F.G., and Bekbulatov, I.G., Mathematical Modeling of the Flow of a Multiphase Heterogeneous Medium in a Permeable Tube, Teor. Osn. Khim. Tekhnol., 2005, vol. 39, no. 5, p. 533 [Theor. Found. Chem. Eng., (Engl. Transl.), 2005, vol. 39, no. 5, p. 503].

    Google Scholar 

  28. Smirnov, N.N., Pushkin, V.N., Dushin, V.R., and Kulchitskiy, A.V., Microgravity Investigation of Laminar Flame Propagation in Monodisperse Gas-Droplet Mixture, Acta Astronaut., 2007, vol. 61, p. 626.

    Article  ADS  Google Scholar 

  29. Dushin, V.R., Kulchitskiy, A.V., Nerchenko, V.A., Nikitin, V.F., Osadchaya, E.S., Phylippov, Yu.G., and Smirnov, N.N., Mathematical Simulation for Non-Equilibrium Droplet Evaporation, Acta Astronaut., 2008, vol. 63, p. 1.

    Article  Google Scholar 

  30. Panchenko, S.V., Panchenko, N.B., and Glebova, M.N., Transfer Processes in Heterogeneous Reduction Reactors, Teor. Osn. Khim. Tekhnol., 2004, vol. 38, no. 6, p. 611 [Theor. Found. Chem. Eng., (Engl. Transl.), 2004, vol. 38, no. 6, p. 575].

    Google Scholar 

  31. Pivushkov, A.V., Peregudov, N.I., and Samoilenko, N.G., Regimes of Ignition of Heterogeneous Systems, Khim. Fiz., 2005, vol. 24, no. 2, p. 82.

    Google Scholar 

  32. Voloshko, A.A. and Sazonov, S.V., Heat Transfer during Gas Bubble Formation in a Liquid Layer, Teor. Osn. Khim. Tekhnol., 1998, vol. 32, no. 6, p. 653 [Theor. Found. Chem. Eng., (Engl. Transl.), 1998, vol. 32, no. 6, p. 595].

    Google Scholar 

  33. Voloshko, A.A., Heat Exchange during the Formation of Gas Bubbles, Teor. Osn. Khim. Tekhnol., 1994, vol. 28, no. 2, p. 185.

    Google Scholar 

  34. Zhdan, S.A., Detonation of a Column of a Chemically Active Bubbly Medium in a Liquid, Fiz. Goreniya Vzryva, 2003, vol. 39, no. 4, p. 107 [Combust., Explos. Shock Waves (Engl. transl), 2003, vol. 39, no. 4, p. 458].

    Google Scholar 

  35. Zhdan, S.A. and Liapidevskii, V.Yu., Detonation in a Two-Layer Bubbly Medium, Fiz. Goreniya Vzryva, 2002, vol. 38, no. 1, p. 123 [Combust., Explos. Shock Waves (Engl. transl), 2002, vol. 38, no. 1, p. 109].

    Google Scholar 

  36. Zhdan, S.A., Steady Detonation in a Bubbly Medium, Fiz. Goreniya Vzryva, 2002, vol. 38, no. 3, p. 85 [Combust., Explos. Shock Waves (Engl. Transl.), 2002, vol. 38, no. 3, p. 327].

    Google Scholar 

  37. Merzhanov, A.G., Barzykin, V.V., and Abramov, V.G., The Theory of Heat Explosion: From N.N. Semenov to Our Days, Khim. Fiz., 1996, vol. 15, no. 6, p. 3.

    Google Scholar 

  38. Nakoryakov, V.E., Pokusaev, B.G., and Shreiber, I.R., Volnovaya dinamika gazoi parozhidkostnykh sred, Moscow: Energoatomizdat, 1990. Translated under the title Wave Propagation in Gas-Liquid Media, Boca Raton: CRC Press, 2000.

    Google Scholar 

  39. Denisov, E.T. and Afanas’ev, I.B., Oxidation and Antioxidants in Organic Chemistry and Biology, Andover: CRC Press, 2005.

    Book  Google Scholar 

  40. Denisov, E.T., Kinetika gomogennykh khimicheskikh reaktsii (Kinetics of Homogeneous Chemical Reactions), Moscow: Nauka, 1978.

    Google Scholar 

  41. Nurullina, N.M., Batyrshin, N.N., and Kharlampidi, Kh.E., Effect of Zinc-Subgroup Metal Salts on the Formation of Hydroperoxide during the Oxidation of Cumene, Neftekhimiya, 2009, vol. 48, no. 5, p. 405 [Pet. Chem. (Engl. Transl.), 2009 vol. 48, no. 5, p.385 ].

    Google Scholar 

  42. Smirnov, N.N., Nikitin, V.F., Khadem, J., and Alyari-Shourekhdeli, Sh., Onset of Detonation in Polydispersed Fuel-Air Mixtures, Proc. Combust. Inst., 2007, vol. 31, p. 2195.

    Article  Google Scholar 

  43. Hanby, R.F., Silvester, D.J., and Chew, J.W., A Comparison of Coupled and Segregated Iterative Solution Technique for Incompressible Swirling Flow, Int. J. Numer. Methods Fluids, 1998, vol. 22, no. 5, p. 353.

    Article  MathSciNet  Google Scholar 

  44. Levy, S., Two-Phase Flow in Complex Systems, New York: Wiley, 1999.

    Google Scholar 

  45. TRC Thermodynamic Tables-Hydrocarbons, College Station (Texas, United States): Thermodynamics Research Center, Texas A&M University System, 1991.

  46. Yaws, C., Handbook of Thermal Conductivity, Houston: Gulf, 1996.

    Google Scholar 

  47. Gallant, R.W. and Railey, J.M., Physical Properties of Hydrocarbons, Houston: Gulf, 2005, 3rd ed., vol. 2, p. 257.

    Google Scholar 

  48. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Sovetskaya Entsiklopediya, 1988.

    Google Scholar 

  49. Danilov, I.M. and Son, E.E., The Simulation of a Gas-Liquid Chemical Reactor with Dispersed Medium, Teplofiz. Vys. Temp., 2010, vol. 48, no. 4, p. 600 [High Temp. (Engl. Transl.), 2010, vol. 48, no. 4, p. 572].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Danilov.

Additional information

Original Russian Text © I.M. Danilov, V.S. Iorish, E.E. Son, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 2, pp. 225–234.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, I.M., Iorish, V.S. & Son, E.E. Simulation of chemical transformation wave propagation through a flow reactor with a microbubble medium. High Temp 49, 217–226 (2011). https://doi.org/10.1134/S0018151X11020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11020040

Keywords

Navigation