Skip to main content
Log in

Modeling of Acetylene Formation from Methane in a Plasma Jet

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

This work is devoted to numerical simulation of methane conversion to acetylene under plasma jet pyrolysis conditions and to comparison of simulation results with available experimental data. Calculations have been carried out in terms of the plug-flow reactor model for atmospheric pressure. The main processes of methane decomposition and acetylene formation have been analyzed for the case of using either hydrogen or methane as a plasma-forming gas. The results of calculations on the main products of methane decomposition (hydrogen and acetylene) are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Antonov, V.N. and Lapidus, A.S., Proizvodstvo atsetilena (Acetylene Production), Moscow: Khimiya, 1970.

  2. Temkin, O.N., Shestakov, G.K., and Treger, Yu.A., Atsetilen: Khimiya. Mekhanizmy reaktsii. Tekhnologiya (Acetylene: Chemistry, Reaction Mechanisms, and Technology) Moscow: Khimiya, 1991.

  3. Pässler, P., Hefner, W., Buckl, K., Meinass, H., Meiswinkel, A., Wernicke, H., Ebersberg, G., Müller, R., Bässler, J., Behringer, H., and Mayer, D., Acetylene, In Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley–VCH, 2008, 7th ed. https://doi.org/10.1002/14356007.a01 097.pub3

  4. Shlyapin, D.A., Afonasenko, T.N., Glyzdova, D.V., Leont’eva, N.N., and Lavrenov, A.V., Catal. Ind., 2022, vol. 14, no. 3, p. 251.

    Article  Google Scholar 

  5. Bedenko, S.P., Dement’ev, K.I., and Maximov, A.L., Pet. Chem., 2022, vol. 62, no. 9, p. 989.

    Article  CAS  Google Scholar 

  6. Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., and Nikitin, A.V., Catal. Ind., 2022, vol. 14, no. 1, p. 1.

    Article  Google Scholar 

  7. Maretina, I.A., Russ. J. Appl. Chem., 1996, vol. 69, no. 3, p. 311.

    Google Scholar 

  8. Maretina, I.A. and Trofimow, B.A., Russ. Chem. Rev., 2000, vol. 69, no. 7, p. 591.

    Article  CAS  Google Scholar 

  9. Slovetskii, D.I., Mankelevich, Yu.A., Slovetskii, S.D., and Rakhimova, T.V., High Energy Chem., 2002, vol. 36, no. 1, p. 44.

    Article  CAS  Google Scholar 

  10. Kinetika i termodinamika khimicheskikh reaktsii v nizkotemperaturnoi plazme (Kinetics and Thermodynamics of Chemical Reactions in Low-Temperature Plasma), Polak, L.S., Ed., Moscow: Nauka, 1965.

    Google Scholar 

  11. Bilera, I.V. and Lebedev, Y.A., Pet. Chem., 2022, vol. 62, no. 4, p. 329.

    Article  CAS  Google Scholar 

  12. Dors, M., Nowakowska, H., Jasinski, M., and Mizeraczyk, J., Plasma Chem. Plasma Process., 2014, vol. 34, no. 2, p. 313.

    Article  CAS  Google Scholar 

  13. Hughes, K.J., Turanyi, T., Clague, A.R., and Pilling, M.J., Int. J. Chem. Kinet., 2001, vol. 33, no. 9, p. 513.

    Article  CAS  Google Scholar 

  14. Cheng, Y., Li, T., Rehmet, C., An, H., Yan, B., and Cheng, Y., Chem. Eng. J., 2017, vol. 315, p. 324.

    Article  CAS  Google Scholar 

  15. An, H., Cheng, Y., Li, T., and Cheng, Y., Fuel Process. Technol., 2018, vol. 172, p. 195.

    Article  CAS  Google Scholar 

  16. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Chung, K., and Law, C.K., USC Mech Version II: High-temperature combustion reaction model of H2/CO/C1–C4 compounds, May 2007. http://ignis.usc.edu/USC_Mech_II.htm

  17. Appel, J., Bockhorn, H., and Frenklach, M., Combust. Flame, 2000, vol. 121, p. 122.

    Article  CAS  Google Scholar 

  18. Ma, J., Su, B., Wen, G., Ren, Q., Yang, Y., Yang, Q., and Xing, H., Int. J. Hydrogen Energy, 2016, vol. 41, no. 48, p. 22689.

    Article  CAS  Google Scholar 

  19. Marinov, N.M., Pitz, W.J., Westbrook, C.K., Vincitore, A.M., Castaldi, M.J., Senkan, S.M., and Melius, C.F., Combust. Flame, 1998, vol. 114, nos. 1–2, p. 192.

    Article  CAS  Google Scholar 

  20. Holmen, A., Rokstad, O.A., and Solbakken, A., Ind. Eng. Chem. Process Des. Dev., 1976, vol. 15, no. 3, p. 439.

    Article  CAS  Google Scholar 

  21. Zhang, H., Wang, W., Li, X., Han, L., Yan, M., Zhong, Y., and Tu, X., Chem. Eng. J., 2018, vol. 345, p. 67.

    Article  CAS  Google Scholar 

  22. Heijkers, S., Aghaei, M., and Bogaerts, A., J. Phys. Chem. C, 2020, vol. 124, no. 13, p. 7016.

    Article  CAS  Google Scholar 

  23. Ravasio, S. and Cavallotti, C., Chem. Eng. Sci., 2012, vol. 84, p. 580.

    Article  CAS  Google Scholar 

  24. Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A., Proc. Combust. Inst., 2011, vol. 33, no. 1, p. 625.

    Article  CAS  Google Scholar 

  25. Shao, C., Kukkadapu, G., Wagnon, S.W., Pitz, W.J., and Sarathy, S.M., Combust. Flame, 2020, vol. 219, p. 312.

    Article  CAS  Google Scholar 

  26. Kozlov, G.I., Khudyakov, G.N., and Kobzev, Yu.N., Pet. Chem., 1967, vol. 7, no. 1, p. 83.

    Google Scholar 

  27. Kobzev, Yu.N., Kozlov, G.I., and Khudyakov, G.N., Khim. Vys. Energ., 1970, vol. 4, no. 6, p. 519.

    CAS  Google Scholar 

  28. Epstein, I.L., Lebedev, Yu.A., Tatarinov, A.V., and Bilera, I.V., A, J. Phys. D: Appl. Phys., 2018, vol. 51, p. 214007.

    Article  Google Scholar 

  29. GRI-Mech 3.0. http:combustion.berkeley.edu/gri-mech/

  30. Wang, H. and Frenklach, M., Combust. Flame, 1997, vol. 110, p. 173.

    Article  CAS  Google Scholar 

  31. Mehl, M., Pitz, W.J., Westbrook, C.K., and Curran, H.J., Proc. Combust. Inst., 2011, vol. 33, p. 193.

    Article  CAS  Google Scholar 

  32. Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K., Combust. Flame, 1998, vol. 114, nos. 1–2, p. 149.

    Article  CAS  Google Scholar 

  33. Merkulov, A.A., Ovsyannikov, A.A., Polak, L.S., Popov, V.T., and Pustilnikov, V.Yu., Plasma Chem. Plasma Process., 1989, vol. 9, no. 1, p. 95.

    Article  CAS  Google Scholar 

  34. Merkulov, A.A., Ovsyannikov, A.A., Polak, L.S., Popov, V.T., and Pustilnikov, V.Yu., Plasma Chem. Plasma Process., 1989, vol. 9, no. 1, p. 105.

    Article  CAS  Google Scholar 

  35. Emanuel, N.M. and Knorre, D.G., Kurs khimicheskoi kinetiki (The Course of Chemical Kinetics), Moscow: Vysshaya Shkola, 1974, 3rd ed.

  36. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987, 3rd ed.

  37. Lebedev, Yu.A., Tatarinov, A.V., and Epstein, I.L., Plasma Chem. Plasma Process., 2019, vol. 39, no. 4, p. 787.

    Article  CAS  Google Scholar 

  38. Frenklach, M. and Wang, H., Proc. Combust. Inst., 1991, vol. 23, p. 1559.

    Article  Google Scholar 

  39. Shterenberg, A.M., Vestn. Samarsk. Univ., Fiz.-Mat. Ser., 1998, p. 55.

  40. Winters, H., J. Chem. Phys., 1975, vol. 63, p. 3462.

    Article  CAS  Google Scholar 

  41. Cacciatore, M., Capitelli, M., and Dilonardo, M., Chem. Phys., 1978, vol. 34, p. 193.

    Article  CAS  Google Scholar 

  42. Morgan Database (2014). www.lxcat.net. Retrieved August 29, 2014.

  43. Janev, R. and Reiter, D., Phys. Plasmas, 2004, vol. 11, p. 780.

    Article  CAS  Google Scholar 

  44. Starikovsky, A. and Aleksandrov, N., Prog. Energy Combust. Sci., 2013, vol. 39, p. 61.

    Article  Google Scholar 

  45. Wang, W., Snoeckx, R., Zhang, X., Chaand, M.S., and Bogaerts, A., J. Phys. Chem. C, 2018, vol. 122, no. 16, p. 8704.

    Article  CAS  Google Scholar 

  46. Ovsyannikov, A.A., Chemical reactions in turbulent flows of low-temperature plasma, Nizkotemperaturnaya plazma, tom 3, Khimiya plazmy (Low-Temperature Plasma, vol. 3. Plasma Chemistry), Polak, L.S. and Lebedev, Yu.A, Eds., Novosibirsk: Nauka, 1991, p. 141.

Download references

Funding

The study was carried out within the framework of the state assignment of the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilera, I.V., Lebedev, Y.A., Titov, A.Y. et al. Modeling of Acetylene Formation from Methane in a Plasma Jet. High Energy Chem 58, 332–342 (2024). https://doi.org/10.1134/S0018143924700127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143924700127

Keywords:

Navigation