Skip to main content
Log in

Experimental and Theoretical Study of the Interaction of a Low-Energy Ion Flow with Chemical Fibers

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Modern methods of modification of chemical fibers (CF) and fibrous materials on their basis, first of all, chemical methods of treatment, in absolute majority at improvement of some properties of a material, essentially worsen other properties, or the effect of improvement is not significant and (or) disappears with time. The low-energy ion flow (LEIF) treatment method generated from a high-frequency capacitive (HFC) or capacitively coupled plasma (CCP) discharge at reduced pressure improves certain fiber properties, without deteriorating other properties, while maintaining the long-term effect and without ecological harm in the treatment process. The paper shows the effects of LEIF on the strength and adhesion characteristics of carbon, aramid and glass fibers, fibers based on ultra-high molecular weight polyethylene (UHMWPE) and composites based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Chhetri, S. and Bougherara, H., Compos. Part A: Appl. Sci. Manuf., 2021, vol. 140, p. 106146.

    Article  CAS  Google Scholar 

  2. Wu, Z., Pittman, C.U., Jr., and Gardner, S.D., Carbon, 1995, vol. 33, no. 5. p. 597.

    Article  CAS  Google Scholar 

  3. Li, W., Meng, L., and Ma, R., Polym. Test., 2016, vol. 55, p. 10.

    Article  Google Scholar 

  4. Li, W., Huang, M., and Ma, R., Polym. Adv. Technol., 2018, vol. 29, p. 1287.

    Article  CAS  Google Scholar 

  5. Wang, Q, Wang, H., Wang, Y., et al., Surf. Interface Anal., 2016. vol. 48, no. 3, p. 139.

    Article  Google Scholar 

  6. Wei, B., Song, S., and Cao, H., Mater. Des., 2011, vol. 32, nos. 8–9, p. 4180.

    Article  CAS  Google Scholar 

  7. Abdullin, I.Sh., Zheltuhin, V.S., Nekrasov, I.K., et al., Process. Petrochem. Oil Refin., 2022, vol. 23, no. 4, p. 525.

    CAS  Google Scholar 

  8. Abdullin, I.Sh., Zheltukhin, V.S., and Kashapov, N.F., Vysokochastotnaya plazmenno-struinaya obrabotka materialov pri ponizhennykh davleniyakh. Teoriya i praktika primeneniya (Radiofrequency Plasma Jet Processing of Materials at Reduced Pressures: Theory and Application Practice), Kazan: Izd. Kazanskogo Univ., 2000.

  9. Raizer, Yu.P., Shneider, M.N., and Yatsenko, N.A., Vysokochastotnyi emkostnyi razryad. Fizika. Teknika eksperimenta. Prilozheniya (Radiofrequency Capacitive Discharge: Physics, Experimental Technique, and Applications), Moscow: MFTI–Nauka–Fizmatlit, 1995.

  10. Abdullin, I.Sh., Zheltukhin, V.S., Sagbiev, I.R., and Shaekhov, M.F., Modifikatsiya nanosloev v vysokochastotnoi plazme ponizhennogo davleniya (Modification of Nanolayers in Low-Pressure Radiofrequency Plasma), Kazan: Izd. Kazanskogo Tekhnologicheskogo Univ., 2007.

  11. Abgaryan, V.K. and Semenov, A.A., J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech., 2018, vol. 12, no. 5, p. 1022.

    Article  CAS  Google Scholar 

  12. Abgaryan, V.K., Nadiradze, A.B., Semenov, A.A., and Troshin, A.E., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2019, vol. 13, no. 6, p. 1054.

    Article  CAS  Google Scholar 

  13. Sergeeva, E.A., Abdullin, I.Sh., and Zheltukhin, V.S., Modifikatsiya sinteticheskikh voloknistykh materialov i izdelii neravnovesnoi nizkotemperaturnoi pazmoi. Ch. 1: Teoriya, modeli, metody (Modification of Synthetic Fibrous Materials and Articles by Nonequilibrium Low-Temperature Plasma, Part 1: Theory, Models, and Methods), Kazan: Izd. Kazanskogo Tekhnologicheskogo Univ., 2011.

  14. Sergeeva, E.A., Korneeva, N.V., Zenitova, L.A., and Abdullin, I.Sh., Modifikatsiya sinteticheskikh voloknistykh materialov i izdelii neravnovesnoi nizkotemperaturnoi pazmoi. Ch. 2: Svoistva, struktura, tekhnologii (Modification of Synthetic Fibrous Materials and Articles by Nonequilibrium Low-Temperature Plasma, Part 2: Properties, Structure, and Technology), Kazan: Izd. Kazanskogo Tekhnologicheskogo Univ., 2011.

  15. Tager, A.A., Fiziko-khimiya polimerov (Physical Chemistry of Polymers), Moscow: Nauchnyi Mir, 2007, 4th ed.

  16. Nikolaev, A.F., Mezhmolekulyarnye vzaimodeistviya v polimerakh (Intermolecular Interactions in Polymers), Leningrad: Leningradskii Tekhnologicheckii Institut, 1986.

  17. Gurvich, L.V., Karachevtsev, G.V., Kondrat’ev, V.N., et al., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektrony (Chemical Bond Energies, Ionization Potentials and Electron Affinity), Kondrat’ev, V.N., Ed., Moscow: Nauka, 1974.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Nekrasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullin, I.S., Zheltuhin, V.S., Nekrasov, I.K. et al. Experimental and Theoretical Study of the Interaction of a Low-Energy Ion Flow with Chemical Fibers. High Energy Chem 57 (Suppl 1), S132–S136 (2023). https://doi.org/10.1134/S0018143923070020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923070020

Navigation